博碩士論文 975201068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.224.73.124
姓名 周銘哲(Ming-Zhe Chou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
(Linear-Cascade Near-Ballistic Uni-Traveling-Carrier Photodiodes with a Breakthrough in the Performance of Saturation-Current-Bandwidth Product(7500mA-GHz,75mA,100GHz))
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器
★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器
★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射
★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文運用串接式單載子傳輸光偵測器提升射頻光纖系統中接收端前級元件光二極體的飽和電流與頻寬乘積值,而這個乘積值往往成為判斷元件好壞程度的重要參數。經由理論得知飽和電流和頻寬受元件收光面積與空乏區厚度影響;薄的空乏區厚度造成電容上升,但會使得載子傳輸時間下降得到高輸出飽和電流,故必須降低主動區面積使得電容值下降,藉以得到高頻寬表現。因此本文內容將探討利用串接式結構提升飽和電流與頻寬乘積值,令元件能夠承受更高飽和電流(75mA),且頻寬也可以維持在100GHz,在50歐姆負載下擁有創新紀錄的飽和電流與頻寬之乘積(7500mA-GHz, 75mA, 100GHz)。
摘要(英) In this study, we demonstrate linear-cascade near-ballistic uni-traveling carrier photodiodes (LCPDs) with an optimized extremely high saturation current-bandwidth product performance (7500mA-GHz, 75mA, 100GHz,) which is the key parameter of photodiode with radio-of-fiber communication system. A thinner depletion layer thickness indicates a larger junction capacitance, a shorter carrier transit time, and a higher saturation current performance. The downscaling of device active area is thus necessary to sustain a low junction capacitance and achieve very-high speed performance. In this work we demonstrate linear cascade near-ballistic uni-traveling-carrier photodiodes. Compared with control (a single device), this novel structure exhibits significant improvement in bandwidth-efficiency and saturation-current-bandwidth products. Record-high saturation-current-bandwidth product (>7500mA-GHz, 100GHz) under 50? loads can be achieved.
關鍵字(中) ★ 串接式
★ 光檢測器
關鍵字(英) ★ cascade
★ photodetector
論文目次 摘要 ii
Abstract iii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 序論 1
§1.1光偵測器之發展與應用 1
§1.2串接式與傳統式光檢測器之比較 10
§1.3論文動機與架構 17
第二章 彈道傳輸單載子光偵測器設計 18
§2.1傳統P-I-N光偵測器工作原理 18
§2.2單載子傳輸光偵測器工作原理 20
§2.3串接式近彈道傳輸單載子光偵測器之磊晶設計 24
§2.4串接式近彈道傳輸單載子光偵測器之結構設計 27
第三章串接式近彈道傳輸單載子光偵測器製作 30
§3.1串接式近彈道傳輸單載子光偵測器之製程 30
第四章 量測與結果討論 45
§ 4.1 Heterodyne-Beating 量測系統之架設 45
§ 4.2 頻寬量測結果 47
§ 4.3 高功率產生量測結果 54
第五章 結論與未來研究方向 56
參考文獻 58
圖目錄
圖1-1頻段與傳輸資料量對應曲線 1
圖1-2毫米波在大氣中的吸收頻譜圖 2
圖1-3 (a)毫米波源下被探測物實體圖像 (b)多頻毫米波影像分析圖 (C)單頻毫米波影像分析圖 3
圖1-4 各通訊協定的頻寬與涵蓋範圍對應圖 4
圖1-5 WiGig技術與多媒體裝置結合 5
圖1-6 (a) 光子接受器(amplified photo receiver)
(b) 光連結系統(fiber optic link) 6
圖1-7 光纖技結合無線傳輸之系統架構圖 7
圖1-8 以毫米波作無線傳輸即時轉播之系統架構圖 8
圖1-9 (a)波導式光偵測器之剖面結構圖 (b) 行波式光偵測器之剖面結構圖 (c) 行波式光測器商業化實體 11
圖1-10 行波式光偵測器等效電路 12
圖1-11 光波與微波在不同頻率之速度比較圖 13
圖1-12行波光偵測器的等效電路模型 13
圖1-13運用覆晶結合技術之高功率元件 (a)異質結構場效電晶體(HFETs) (b)高電子移動率電晶體(HEMTs) (c)光二極體.....16
圖2-1 傳統P-I-N 光偵側器結構圖 18
圖2-2 單載子傳輸光偵測器與傳統P-I-N光偵測器空間電荷屏蔽效應 21
圖2-3 單載子傳輸光偵測器之實際操作與內部載子速度示意圖 22
圖2-4 彈道傳輸單載子光偵測器之能帶圖 25
圖2-5 電場在磊晶層之分佈 25
圖2-6 (a)載子於超厚無摻雜收集層之能帶圖 (b) 載子較薄無摻雜收集層之能帶圖 (c) 載子於串接式結構內部復合之能帶圖 28
圖3-1 陽極金屬(a)Mask 1(single) (b) 立體側視圖
(c) Mask 1(cascade) 32
圖3-2 主動區蝕刻後側視圖 33
圖3-3 陰極金屬(a) Mask 2(single)(b)立體側視圖 (c) Mask 2 (cascade) 34
圖3-4 定義元件區(a) Mask3 (single)(b)立體側視圖 (c) Mask 3 (cascade) 35
圖3-5 保護層(a) Mask4 (single)(b)立體示意圖 (c) Mask 4 (cascade) 36
圖3-6 平坦化製程(a) Mask4 (single)(b)立體示意圖 (c) Mask4 (cascade) 38
圖3-7 金屬墊製作 (a)立體示意圖 (b) Mask 5 (single) (c) 完成品俯視圖 (d) Mask 5 (cascade) (e) 完成品俯視圖 39
圖3-8 元件背面蝕刻 (a) Mask 6(b)SEM圖之蛋狀蝕刻 (c) 立體示意圖 41
圖3-9 傳輸線基板 (a) Mask 7 (single)(b)立體示意圖 (c) Mask7 (cascade) (d) 立體示意圖 42
圖3-10 凸塊製作 (a) Mask 8 (single)(b)立體示意圖(c)Mask8 (cascade) (d) 立體示意圖 43
圖3-11 元件與傳輸線結合後之俯視圖 44
圖4-1 Heterodyne-Beat原理圖 45
圖4-2 Heterodyne-Beating system 量測架設示意圖 46
圖 4-3 Device A~C -3V之逆向偏壓下頻率響應之比較 47
圖4-4 串接式近彈道傳輸單載子光偵測器之二埠等效電路模型 48
圖4-5 -3V反向偏壓下的參數 量測和模擬之微波頻率響應 50
圖4-6 Device C 在-10v偏壓狀況下,偶光損耗對頻率響應之變化 51
圖4-7 AC/DC比例與輸出訊號關係圖 52
圖4-8 光訊號開關速率 53
圖4-9 單顆與串聯個別操作在27GHz與91GHz情況量測到的光功率 54
圖5-1 Linear cascade PD與Qusai-Yagi Antenna 結合示意圖 57
圖5-2 將結合Linear cascade PD元件後的Qusai-Yagi Antenna與號角天線搭配式意圖 57
表目錄
表2-1 彈道傳輸單載子光偵測器之磊晶結構層 26
表3-1 HDP Recipe 33
表4-1 在等效電路中模擬過程所使用的元素之數值與物理意義 49
表4-2 比較Linear cascade PDs 與其他PDs飽和電流-頻寬乘積值 55
參考文獻 [1] Yuichi Kado, Mitsuru Shinagawa, Ho-Jin Song, and Tadao Nagatsuma; “Close Proximity Wireless Communication Technologies Using Shortwaves, Microwaves, and Sub-terahertz Waves“ Progress In Electromagnetics Research Symposium Proceedings, Xi'an, China, Mar. 22-26, 2010.
[2] Mario Weiß, Mathieu Huchard, Andreas Stöhr, Benoît Charbonnier, Sascha Fedderwitz, and Dieter Stefan Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s” J. of Lightwave Tech., vol. 26, no. 15, pp. 2424-2429, Aug. 2008.
[3] T. Nagatsumaa,b, T. Kumashiroa, Y. Fujimotoa, K. Taniguchia, K. Ajitob, N. Kukutsub, T. Furutac, A. Wakatsukic, and Y. Kadob “Millimeter-wave Imaging Using Photonics-based Noise Source,” in IRMMW-THz 34, 2009.
[4] J. J. Vegas Olmos, Toshiaki Kuri, and Ken-Ichi Kitayama,“60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network,” IEEE Photon. Technol. Lett., vol. 20, no. 8, pp. 617-619, Apr. 2008.
[5] http://www.linphotonics.com
[6] Tadao Nagatsuma, Hiroshi Ito, and Tadao Ishibashi, “High-power RF photodiodes and their applications” Laser & Photon. Rev. 3, no. 1–2, 123–137 (2009) / DOI 10.1002/lpor.200810024
[7] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006.
[8] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors, ”IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul. 1999.
[9] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul./Aug. 2004.
[10] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic generation of
continuous THz wave using uni-traveling-carrier photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec. 2005.
[11] J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-Speed, High-Responsivity, and High-Power Performance of Near- Ballistic Uni-Traveling-Carrier Photodiode at 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, pp. 1929-1931, Sep. 2005.
[12] Y.-S. Wu, and J.-W. Shi “Dynamic Analysis of High-Power and High-Speed
Near-Ballistic Unitraveling Carrier Photodiodes at W-Band” IEEE Photon. Technol. Lett., vol. 20, pp. 1160-1162, July. 2008.
[13] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, Apr. 2006.
[14] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol. 17, pp. 1722-1724, Aug. 2005.
[15] Kazutoshi Kato, “Ultrawide-Band/High-Frequency Photodetectors ” IEEE Trans. Microwave Theory Tech., vol. 47, No 7, Jul. 1999.
[16] Andreas Beling, Hao Chen, Huapu Pan, and Joe C. Campbell, “High-Power Monolithically Integrated Traveling Wave Photodiode Array,” IEEE Photon. Technol. Lett., vol. 21, no. 24, 15, Dec. 2009.
[17] L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho “High-Power High-Speed Photodetectors—Design, Analysis, and Experimental Demonstration” IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, Aug. 1997.
[18] T. H. Stievater and K. J. Williams, “Thermally Induced Nonlinearities in High-Speed p-i-n Photodetectors,” IEEE Photon. Technol. Lett, vol. 16, pp. 239-241, Jan. 2004.
[19] N. Li, H. Chen, N. Duan, M. Liu, S. Demiguel, R. Sidhu, A. L. Holmes, Jr., and J. C. Campbell, “High Power Photodiode Wafer Bonded to Si Using Au With Improved Responsivity and Output Power” IEEE Photon. Technol. Lett, vol. 18, pp. 2526-2528, Dec. 2006.
[20] Ning Duan, Xin Wang, Ning Li, Han-Din Liu, and Joe C. Campbell, “ThermalAnalysis of High-Power InGaAs–InP Photodiodes,” IEEE J. Quantum Electron., vol. 42, no. 12, pp. 1255-1258, Dec. 2006..
[21] Jo Das, Herman Oprins, Hangfeng Ji, Andrei Sarua, Wouter Ruythooren, Joff Derluyn, Martin Kuball, Marianne Germain, and Gustaaf Borghs “Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design,” IEEE Transactions On Electron Device, vol. 53, no. 11, pp. 2696-2700, Nov. 2006.
[22] S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition.
[23] Donald A. Neamen “Semiconductor physics & Devices Basic Principle,” second edition
[24] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, Jul./Aug. 2004.
[25] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaA Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar. 1998.
[26] T. Ishibashi, “Nonequilibrium Electron Transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, pp. 2595 - 2605, Nov. 2001.
[27] T. Ishibashi and Y. Yamauchi, “A Possible Near-Ballistic Collection in an AlGaAs/GaAs HBT with a Modified Collector Structure,” IEEE Trans. on Electron Devices, vol. 35, pp. 401-404, Apr. 1988.
[28] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-Saturation-Current Charge-Compensated InGaAs-InP Uni-Traveling-Carrier Photodiode,” IEEE Photon. Technol. Lett., vol. 16, pp. 864-866, Mar. 2004.
[29] A. Beling, J. C. Campbell, H.-G. Bach, G. G. Mekonnen, and D. Schmidt, “Parallel-Fed Traveling Wave Photodetector for >100-GHz Applications,” J. of Lightwave Technol., vol. 26, pp. 16-20, Jan. 2008
[30] J.-W. Shi, F .-M. Kuo, C.-J. Wu, C. L. Chang, C. Y. Liu, C.-Y. Chen, and J.-I. Chyi, “Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure,” IEEE J. Quantum Electron., vol. 46, pp. 80-86, Jan. 2010.
[31] http:/www.u2t.de/
[32] Akihiko Hirata, Toshihiko Kosugi, Nicholas Meisl, Tsugumichi Shibata, Tadao Nagatsuma,” High-Directivity Photonic Emitter Using Photodiode Module Integrated With HEMT Amplifier for 10-Gbit/s Wireless Link,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1843-1850, Aug. 2004
指導教授 許晉瑋(Jin-wei Shi) 審核日期 2010-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明