參考文獻 |
參考文獻
[1] Roberto Bez et al, “Introduction to Flash Memory,” Proc. IEEE ,vol. 91,No. 4, 2003.
[2] S. M. Sze, Kwok K. Ng, Physics of Semiconductor Device. p. 350-351.
[3] S. M. Sze, Kwok K. Ng, Physics of Semiconductor Device. p. 352-360.
[4] W. K. Shih, E. X. Wang, S. Jallepalli, F. Leon, C. M. Maziar, and A. F. Tasch, Jr., “Modeling gate leakage current in nMOS structure due to tunneling through an ultra-thin oxide,” Solid-State Electron., 42, 997(1998).
[5] Sandip Tiwari, “A silicon nanocrystals based memory,” Applied Physics Letters, vol. 68, p. 1377, 1996.
[6] J. Dufourcq et al, “High density platinum nanocrystals for non-volatile memory applications,” Applied Physics Letters, vol. 92, pp. 073102, 2008.
[7] J. J. Lee, Dim-Lee Kwong, “Metal nanocrystal memory with high-k tunneling barrier for improved data retention,” IEEE Transaction on Electron Devices, vol.52, pp.507-511, 2005.
[8] S. Maikap et al, “Physical and electrical characteristics of atomic layer deposited TiN nanocrystal memory capacitors,” Applied Physics Letters, vol. 91, pp. 043114, 2007.
[9] 楊露瑜, “應用氮化矽作為穿隧介電層之鍺量子點電晶體之研製”,碩士論文,國立中央大學,民國97年。
[10] Byoungjun Park et al., “Memory characteristics of Al nanocrystals embedded in Al2O3 layers,” Microelectronic Engineering, vol. 84, 2007, p. 1627-1630.
[11] X. Wang et al., “A novel high-k SONOS memory using TaN/Al2O3/Ta2O5/HfO2/Si structure for fast speed and long retention operation,” IEEE Transaction on Electron Devices, vol. 53, No.1, 2006.
[12] Konstantin K. Likharev, “Layered tunnel barriers for nonvolatile memory devices,” Applied Physics Letters, vol. 73, No. 15, 1998.
[13] Y. Liu et al, “Improved performance of SiGe nanocrystal memory with VARIOT tunnel barrier,” IEEE Trans. Electron. Device, vol. 53, No. 10, pp. 2598-2602, 2006.
[14] Julie D. Casperson et al, “Materials issues for layered tunnel barrier structure,” J. Appl. Phys., vol. 92, No. 1, pp.261-267, 2002.
[15] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnology, vol. 18, p. 145402, 2007.
[16] A. S. Grove, Physics and Technology of Semiconductor Devices. New York:Wiley, 1967.
[17] Yuan Taur, Tak H. Ning, Foundamentals of Modern VLSI Devices. p. 96.
[18] Y. Takahashi and K. Ohnishi, “Estimation of Insulation Layer Conductance in MNOS Structure,” IEEE Trans. Electron Dev., ED-40, 2006 (1993).
[19] J. H. Wu and P. W. Li, “Ge nanocrystals metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12,” Semiconductor Science and Technology, vol. 22, p. S89, 2001.
[20] K. K. Ng and G. W. Taylor, “Effects of Hot-Carrier Trapping in n- and p-Channel MOSFET’s,” IEEE Trans. Electron Dev., ED-30, 871 (1983).
[21] Chuan-Hsi Liu and Jin-Lai Chen, Semiconductor Device Physics and Process:Theory & Practice. P.235.
[22] S. M. Sze, Kwok K. Ng, Physics of Semiconductor Device. p. 227-229.
[23] Zhung L, Gyo L and Chou S. Y., IEEE Int. Electron Devices Meeting, p. 167, 1997.
[24] Y. Maeda et al, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Applied Physics Letters, vol. 59, p. 3168, 1991.
[25] K. V. Shcheglov, et al, “Electroluminescence and photoluminescence of Ge-implanted Si/SiO2/Si structures,” Applied Physics Letters, vol. 66, p. 745, 1995.
[26] Valentin Craciun et al, “Light emission from germanium nanoparticles formed by ultraviolet assisted oxidation of silicon-germanium,” Applied Physics Letters, vol. 69, p. 1506, 1996.
[27] P. W. Li et al, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Applied Physics Letters, vol. 83, p. 4628, 2003.
[28] T. Kobayashi et al, “Ge nanocrystals in SiO2 films,” Applied Physics Letters, vol. 71, p. 1195, 1997.
[29] Tsu-Jae King and K. C. Saraswat, “Deposition and properties of low-pressure chemical-vapor deposited polycrystalline silicon-germanium films,” Journal of Electrochemical Society, vol. 141, No. 8, p. 2235, 1994.
[30] Min Cao, Albert Wang, Krishna C. Saraswat, “Low pressure chemical vapor deposition of Si1-XGeX film on SiO2,” Journal of Electrochemical Society, vol. 142, No. 5, p. 1566, 1995.
[31] S. S. Tzeng and P. W. Li, “Enhanced 400-600 nm photoresponsivity of metal-oxide-semiconductor diodes with multi-stack germanium quantum dots,” Nanotechnology, vol. 19, p. 235203, 2008.
[32] 徐紹華, “具有自我對準下閘電極鍺量子點單電洞電晶體之研製”,碩士論文,國立中央大學,民國96年。
[33] Honghua Du, Richard E. Tressler, and Karl E. Spear, “Thermodynamics of the Si-N-O system and kinetic modeling of oxidation of Si3N4,” Journal of Electrochemical Society, vol. 136, No. 11, p. 3210, 1989.
[34] 曾柏皓, “鍺量子點嵌入二氧化矽/氮化矽/二氧化矽層之浮點電晶體研製”,碩士論文,國立中央大學,民國99年。
[35] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior,” Applied Physics Letters, vol. 59, p. 1200, 1991.
[36] 陳冠宏, “應用於高效率單電子元件鍺量子點之研製:鍺量子點定位與定量之探討”,碩士論文,國立中央大學,民國98年。
[37] 汪建民,Materials Analysis. p. 224-234.
[38] M. H. White et al, “On the go with SONOS,” IEEE Circuits Devices Mag., vol. 16, No. 4, pp. 22-31, Jul. 2000.
[39] 許書豪, “非揮發性鍺量子點掩埋於二氧化矽/氮化矽複合穿隧介電曾知MOS電容研製與載子傳輸機制之探討”,碩士論文,國立中央大學,民國97年。
|