博碩士論文 975202018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.221.27.56
姓名 林英傑(Ying-Jie Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 使用啟發式原則找出具影響力的微網誌作者與訊息傳播路徑
(Using Heuristic Methods to Find Influential Microbloggers and Information Propagation Paths)
相關論文
★ 應用自組織映射圖網路及倒傳遞網路於探勘通信資料庫之潛在用戶★ 基於社群網路特徵之企業電子郵件分類
★ 行動網路用戶時序行為分析★ 社群網路中多階層影響力傳播探勘之研究
★ 以點對點技術為基礎之整合性資訊管理 及分析系統★ 在分散式雲端平台上對不同巨量天文應用之資料區域性適用策略研究
★ 應用資料倉儲技術探索點對點網路環境知識之研究★ 從交易資料庫中以自我推導方式探勘具有多層次FP-tree
★ 建構儲存體容量被動遷徙政策於生命週期管理系統之研究★ 應用服務探勘於發現複合服務之研究
★ 利用權重字尾樹中頻繁事件序改善入侵偵測系統★ 有效率的處理在資料倉儲上連續的聚合查詢
★ 入侵偵測系統:使用以函數為基礎的系統呼叫序列★ 有效率的在資料方體上進行多維度及多層次的關聯規則探勘
★ 在網路學習上的社群關聯及權重之課程建議★ 在社群網路服務中找出不活躍的使用者
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全球網際網路的出現,讓人跟人之間有了新的聯繫方式。研究者得以在虛擬空間中觀察與模擬出部份社會網絡的特性。針對Social Network Services 的研究很多,部份關注在網絡中口碑的傳遞,這類研究對於強化病毒式行銷的成效有很大的幫助。本研究也關注於一段訊息、概念是如何在社會網絡中散播。我們選擇微網誌作為觀察的對象,跟其他的Social Network Services 不同,微網誌具有訊息公開,互動頻繁且多樣等特性。加上有許多公司採用微網誌來進行行銷,觀察微網誌上的訊息擴散將可以更深入了解訊息的傳播是否存在一些更有效率的方式。
本研究將試圖找出具有影響力的人物並量化該人物影響力,我們定義一個使用者的影響力為使用者的一段訊息引起其他人討論的機率或是速率。也就是耗費的時間越短同時引起的討論越多的人就是有影響力的人。藉由將使用者的影響力量化,讓不同使用者的影響力可以在一定範圍內進行比較,同時利用Frequent Itemset 發覺同一類型的訊息常見的傳播路徑。藉由上述的成果,本研究可以幫助行銷人員找出訊息在網路中要透過誰來傳遞才是最有效率的,藉以找出適合作為病毒式行銷中初期體驗者的人選。
摘要(英) Because of the emergence of world wide web, people have a new interactive way. The researchers can also easily observe parts of the features of social networks in the Internet.
Some of the studies related to social network services are about the word of mouth marketing. This study is also concerned about the spreading of the messages and the concepts on the Internet. We choose microblogs as the objects to observe. Different from other social network services, microblog has the features that information is public and interaction is frequently. The goal of the research is to determine whether there is a more efficient way for spreading the message by observing the information diffusion on the microblogs.
This study attempts to identify the influential people and to quantify the influence of the people in different themes. We define a user’’s influence as the speed or the probability of one of his message to cause another user to discuss. In other words, The study quantify the influence of the users by calculating transfer rate or success ratio of the message and make the influence of different users be able to be compared.
Finally, the study can help users find some of the microbloggers who delivers messages through the networks more efficiently, and we can use frequent itemset to find the possible paths of the transmission of a message.
關鍵字(中) ★ 微網誌
★ 社會網絡
★ 社會影響力
★ 病毒式行銷
關鍵字(英) ★ Microblog
★ Viral Marketing
★ Social Influence
★ Social Network
論文目次 Chinese Abstract...i
English Abstract...ii
Acknowledgements...iv
Table of Contents...v
List of Figures...vii
List of Tables...ix
Chapter 1. INTRODUCTION...1
1.1. Motivation...1
1.2. Influence and Information Propagation...2
1.3. Contribution...3
Chapter 2. BACKGROUND AND RELATED WORK ...6
2.1. Information Propagation...6
2.2. Social Influence and Community...8
2.3. Social Influence in Twitter...9
2.4. Quantifying Influence...10
Chapter 3. MICROBLOG...11
3.1. Twitter...12
3.2. Twitter API...13
Chapter 4. PROBLEM DEFINITION...18
4.1. Social Network...18
4.2. Influence and Information Propagation...21
4.3. Information Propagation Graph...22
Chapter 5. METHODOLOGY...27
5.1. Influential Microbloggers...27
5.2. Direct Influence...28
5.2.1. Static Probability Models...28
5.2.2. Continuous Decay Models...29
5.2.3. Discrete Decay Models...31
5.2.4. Speed Models...32
5.3. Frequent Propagation Paths...33
5.3.1. Frequent Itemsets...33
5.3.2. Apriori...33
5.4. System Architecture...35
Chapter 6. EXPERIEMTAL RESULTS...36
6.1. Influential Microbloggers...36
6.2. Frequent Propagation Paths...46
Chapter 7. CONCLUSION...49
Chapter 8. FUTURE WORKS...50
Chapter 9. REFERENCES...51
參考文獻 [1] Pedro Domingos, Matt Richardson, Mining the network value of customers, In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'01)
[2] Matt Richardson, Pedro Domingos, Mining Knowledge-Sharing Sites for Viral Marketing, In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'02)
[3] Meeyoung Cha, Alan Mislove, Krishna P. Gummadi, A Measurement-driven Analysis of Information Propagation in the Flickr Social Network, In Proceedings of the 18th international conference on World wide web (KDD'03)
[4] David Kempe, Jon Kleinberg, ?va TardosDavid Kempe, Jon Kleinberg, ?va Tardos, Maximizing the spread of influence through a social network, In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'03)
[5] X. Song, B. L. Tseng, C.-Y. Lin, and M.-T. Sun, Personalized recommendation driven by information flow, In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR’06)
[6] Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Influence and correlation in social networks, In Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'8)
[7] Jie Tang, Jimeng Sun, Chi Wang, Zi Yang, Social influence analysis in large-scale networks, In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'09)
[8] Amit Goyal, Francesco Bonchi, Laks V.S. Lakshmanan, Learning influence probabilities in social networks, In Proceedings of the third ACM international conference on Web search and data mining (WSDM '10)
[9] Jennifer Golbeck, James Hendler, Inferring binary trust relationships in Web-based social networks, Transactions on Internet Technology (TOIT) , Volume 6 Issue 4, pp. 497-529, 2006
[10] R. Guha, Ravi Kumar, Prabhakar Raghavan, Andrew Tomkins, Propagation of trust and distrust, In Proceedings of the 13th international conference on World Wide Web (WWW '04)
[11] D. Watts, Challenging the influentials hypothesis, WOMMA Measuring Word of Mouth, Volume 3, pages 201--211, 2007.
[12] Jianshu Weng, Ee-Peng Lim, Jing Jiang, Qi He, TwitterRank: finding topic-sensitive influential Twitterers, In Proceedings of the third ACM international conference on Web search and data mining (WSDM'10)
[13] Akshay Java, Xiaodan Song, Tim Finin, Belle Tseng, Why we Twitter: understanding microblogging usage and communities, In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis (KDD'07)
[14] Gary William Flake, Steve Lawrence, C. Lee Giles, Efficient identification of Web communities, In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'00)
[15] Parag Singla, Matthew Richardson, Yes, there is a correlation: from social networks to personal behavior on the web, In Proceeding of the 17th international conference on World Wide Web (WWW'08)
[16] David Crandall, Dan Cosley, Daniel Huttenlocher, Jon Kleinberg, Siddharth Suri, Feedback effects between similarity and social influence in online communities, In Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'08)
[17] Jason Hartline, Vahab Mirrokni, Mukund Sundararajan, Optimal marketing strategies over social networks, In Proceeding of the 17th international conference on World Wide Web (WWW'08)
[18] Jure Leskovec, Lada A. Adamic, Bernardo A. Huberman, The Dynamics of Viral Marketing, Transactions on the Web (TWEB'07)
[19] Daniel Gruhl, R. Guha, Information Diffusion through Blogspace, In Proceedings of the 13th International World Wide Web Conference (WWW’04), May 2004, pp. 491–501.
[20] Jiawei Han, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers Inc., San Francisco, CA, 2005
[21] Jaccard index, http://en.wikipedia.org/wiki/Jaccard_index
[22] Flickr, http://www.flickr.com/
[23] Twitter, http://www.Twitter.com
[24] Twitaholic. Tracking the most popular users of a certain Microblogging, http://twitaholic.com/
[25] Twitter, Twitter API Documentation, http://dev.Twitter.com/doc
[26] Wikipedia, microblog, http://en.wikipedia.org/wiki/Microblogging
[27] Wikipedia, Twitter, http://en.wikipedia.org/wiki/Twitter
[28] Smashing Magazine, http://www.smashingmagazine.com/2008/09/23/practika-a-free-icon-set/
指導教授 蔡孟峰(Meng-Feng Tsai) 審核日期 2010-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明