博碩士論文 975202072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.221.27.56
姓名 郭依羚(Yi-ling Kuo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於社群行為分析之階層化角色分類法
(Hierarchical Role Classification based on Social Behavior Analysis)
相關論文
★ 應用自組織映射圖網路及倒傳遞網路於探勘通信資料庫之潛在用戶★ 基於社群網路特徵之企業電子郵件分類
★ 行動網路用戶時序行為分析★ 社群網路中多階層影響力傳播探勘之研究
★ 以點對點技術為基礎之整合性資訊管理 及分析系統★ 在分散式雲端平台上對不同巨量天文應用之資料區域性適用策略研究
★ 應用資料倉儲技術探索點對點網路環境知識之研究★ 從交易資料庫中以自我推導方式探勘具有多層次FP-tree
★ 建構儲存體容量被動遷徙政策於生命週期管理系統之研究★ 應用服務探勘於發現複合服務之研究
★ 利用權重字尾樹中頻繁事件序改善入侵偵測系統★ 有效率的處理在資料倉儲上連續的聚合查詢
★ 入侵偵測系統:使用以函數為基礎的系統呼叫序列★ 有效率的在資料方體上進行多維度及多層次的關聯規則探勘
★ 在網路學習上的社群關聯及權重之課程建議★ 在社群網路服務中找出不活躍的使用者
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 社群網路分析是一種透過資訊技術來對映及測量個人、群體、組織等不同群體的方法,它能利用社交資訊或社交行為之收集,來分析出不同情境下之社群關係,近年來已經有許多人投入社群網路分析的行列。其中,以社群偵測和發現為較熱門的領域,它能找出隱藏的社群用以輔佐推薦系統。
但是我們發現很少研究提到以階層化的方式去探討對抽象化社群的影響,因此,本篇論文的目的是設計一個藉由自動化產生的文章類別階層結合使用者有興趣之文章的角色分類分法。由實驗結果顯示,我們所提出的方法確實可以藉由階層化的方式提升分類的正確性。
摘要(英) Social network analysis is a methodology to collect, analyze, and display the community relationship under different scenarios, it utilizes varied techniques to measure the social information, user-generated content, and social interaction. The last few years have seen a great deal of work on social network analysis. Community detection and discovery particularly is the most popular filed, and it can find the hidden communities to further analysis, such as community recommendation. However, role identification is a difficult job for many social network applications. One of the difficulties is to maintain and utilize large amount of distinct roles. And we found that there are few studies of any kind have examined the influence of using concept hierarchy to social network abstraction. In this paper, we attempt to adapt fuzzy classification method and construct a hierarchy for role classification, in other words, we want to design a role classification methodology based on the documents which users are interested in, and attempts to form the role hierarchy automatically then analyzes it. We believe this approach can encourage the utilization of social roles by considering their identifiable features at different levels.
關鍵字(中) ★ 模糊集合理論
★ 社群偵測
★ 文件分類
★ 社群網路分析
關鍵字(英) ★ Fuzzy Set Theory
★ Community Detection
★ Document Classification
★ Social Network Analysis
論文目次 Chinese Abstract i
English Abstrac ii
Acknowledgment iii
Table of Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Contribution 4
Chapter 2 Related Work 6
Chapter 3 System Architecture 11
Chapter 4 Methodology 14
4-1 Deep community 15
A. Social behavior classification based on fuzzy classification model 16
B. Concept hierarchy of category 18
C. Abstract community 20
Chapter 5 Experiment 23
5-1 Experimental data sets 23
5-2 Cosine similarity 24
5-3 SVM 25
5-4 Results and discussions 25
Chapter 6 Conclusion 34
Reference 35
參考文獻 [1] Hildrum, K. and Yu, P.S. 2005. Focused community Discovery. In Proceedings of the Fifth IEEE International Conference on Data Mining (Houston, USA, November 27 - 30, 2005). 641-644.
[2] Newman, M.E.J. 2006. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E. 74, 036104 (September 11, 2006).
[3] Cai, D., Shao, Z., He, X.,Yan, X., and Han, J. 2005. Mining hidden community in heterogeneous social networks. In Proceedings of the 3rd International Workshop on Link Discovery (Illinois, USA, August 21 – 24, 2005). 58 – 65.
[4] J. Han and M. Kamber, Data Mining: Concepts and Techniques, MORGAN KAUFMANN PUBLISHERS, 2000.
[5] Cheng-Te Lin, Shou-De Lin. Egocentric Information Abstraction for Heterogeneous Social Networks. In Proceedings of the 2009 International Conference on Advances in Social Network Analysis and Mining (Athens, Greece, July 20-22, 2009). 255-260.
[6] Cuene, J. 2005. Web 2.0: Is It a Whole New Internet. http://cuene.typepad.com/MiMA.1.ppt.
[7] O’Reilly, T. 2005. What Is Web 2.0 Design Patterns and Business Models for Next Generation of Software. http://oreilly.com/web2/archive/what-is-web-20.html.
[8] Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. (November 25, 1988). 10881-90.
[9] Hartigan, J.A. and Wong, M.A. 1979. Algorithm AS 136: A k-means clustering algorithm. J. ROY. STAT. SOC. C-APP. (1979). 100-108.
[10] Tantipathananandh, C., Berger-Wolf, T., and Kempe, D. 2007. A framework for community identification in dynamic social networks. In Proceedings of the 13th ACM SIGKDD International conference on Knowledge Discovery and Data Mining (San Jose, USA, August 12 - 15, 2007). 717-726.
[11] Cai, D., Shao, Z., He, X.,Yan, X., and Han, J. 2005. Mining hidden community in heterogeneous social networks. In Proceedings of the 3rd International Workshop on Link Discovery (Illinois, USA, August 21 – 24, 2005). 58 – 65.
[12] Chen, C., Yan, X., Zhu, F., Han, J., and Yu, P.S. 2009. Graph OLAP: a multi-dimensional framework for graph data analysis. Knowl. Inf. Syst. (October, 2009). 41 – 63.
[13] Yoo, S., Yang, Y., Lin, F., and Moon, I-C. 2009. Mining social networks for personalized email prioritization. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Paris, France, June 28 – July 1, 2009). 967—976.
[14] Zaiane, O.R., Chen, J., and Goebel, R. 2007. DBconnect: mining research community on DBLP data. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web mining and Social Network Analysis (San Jose, USA, August 12 - 15, 2007). 74 – 81.
[15] Yang, W-S and Dia, J-B. 2008. Discovering cohesive subgroups from social networks for targeted advertising. EXPERT. SYST. APPL. (April, 2008), 2029 - 2038.
[16] Zhang, J., Tang, J., Liang, B., Yang, Z., Wang, S, Zuo, J., and Li, J. 2008. Recommendation over a heterogeneous social network. In Proceedings of the 2008 International Conference on Web-Age Information Management (Zhangjiajie, China, July 20 – 22, 2008), 309 – 316.
[17] L.A. Zadeh, “Fuzzy Sets,” in D. Dubois, H. Prade, and R.R. Yager, editors, Reading in Fuzzy Sets for Intelligent Systems, Morgan Kaufmann Publishers, 1993.
[18] Baeza-Yates, R.A. and Ribeiro-Neto, B. 1999. Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.
[19] Choudhury, M. D., Sundaram, H., John, A., and Seligmann, D. D. (2009). Social Synchrony: Predicting Mimicry of User Actions in Online Social Media. In Proceedings of the 2009 IEEE International Conference on Social Computing (Vancouver, Canada, August 29-31, 2009).
[20] http://digg.com The Latest News Headlines, Videos and Images.
指導教授 蔡孟峰(Meng-feng Tsai) 審核日期 2010-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明