以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:18 、訪客IP:3.17.75.138
姓名 黃瀚論(Han-Lun Huang) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 以軟體為基準的助聽器模擬平台之發展-方向性麥克風
(Development of a Software-Based Simulation Platform for Hearing Aid-Directional Microphone)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究的目的為發展以軟體為基準的助聽器模擬平台,而在本論文中主要模擬助聽器上的麥克風策略,並且藉由我們的平台了解助聽器功能,提供給聽力受損者、臨床人員和醫生一個輔助工具,並且幫助聽力受損者選擇合適的助聽器。我們的助聽器模擬平台主要包含麥克風策略、噪音消除、與寬動態範圍壓縮(Wide Dynamic Range Compression, WDRC)。為了讓模擬平台能夠讓使用者選擇不同助聽器公司的策略,所以我們透過專利文獻來模擬出四家助聽器公司的麥克風策略,分別是GN ReSound Canta、Sonic Innovation Natura 、Siemens Aktiengesellschaft與Oticon Syncro,並且模擬出另外一種常用於麥克風策略上的Griffiths-Jim Beamformer演算法。透過主觀評量(波形圖、聲譜圖、聆聽聲音)與客觀評量(平均式訊噪比、對數頻譜失真)來評估麥克風策略以及麥克風策略與噪音消除策略結合後的噪音消除的效能。模擬結果顯示,麥克風策略的效能在主觀評量上我們可以發現波形與聲譜上的共振峰變清楚,且透過聆聽聲音發現語音品質被改善許多,另外透過客觀評量發現四家公司麥克風策略都有效提升訊噪比4到6 dB,而Griffiths-Jim Beamformer麥克風策略效果提高了3到4 dB。接著我們將四家公司的麥克風策略和Griffiths-Jim Beamformer麥克風策略各別與各家不同公司的噪音消除策略做結合後,再與WDRC結合,結果顯示更能改善語音信號的訊噪比。
摘要(英) The purpose of this research is to develop a software-based simulation platform for hearing aid. In this thesis, the main focus was on the microphone processing strategy for hearing aid. This study provides a software-based simulation platform for hearing aid, as an assistive tool, for the hearing impaired and clinician to experience hearing aid function and choose appropriate hearing aid. The platform contains microphone strategy, noise reduction, and wide dynamic range compression (WDRC). In this study, microphone processing strategies from four different hearing aid companies were simulated based on the patent literature of GN ReSound (Canta), Sonic Inovation (Natura), Siemens (Aktiengesellschaft), and Oticon (Syncro) to allow users to experience different hearing aid company’’s strategies. Through subjective quality evaluation (waveform, spectrogram, listening) as well as objective quality evaluation (average SNR, log-spectral distance) to assess the microphone strategy, noise reduction strategy combining with microphone strategy of noise elimination performance. For comparison purpose, another commonly used microphones strategy, known as Griffiths-Jim Beamformer Algorithm, was also simulated. In the subjective evaluation, we found that the speech waveform and formant frequencies of the speech spectrogram become clear, and the the voice quality by listening to the sound was better. In addition, through the objective assessment, we found that microphone processing strategies from four hearing-aid companies have effectively enhanced the microphone signal to noise ratio of 4 to 6 dB and the Griffiths-Jim Beamformer strategy improved microphone signal 3 to 4 dB. Furthere improvements of SNRs were shown after we combined four microphone processing strategies and the Griffiths-Jim Beamformer microphone strategy with respective noise reduction strategies from different companies, and the WDRC.
關鍵字(中) ★ 助聽器
★ 模擬平台
★ 麥克風關鍵字(英) ★ Hearing Aid
★ Microphone
★ Simulation Platform論文目次 摘要...……………………………………………………………….…I
Abstract…………………………………………………………….…III
致謝…………………………………………………………….….…..V
目錄…………………………………………………………….……..VI
圖目錄.....................................................................................................X
表目錄..................................................................................................XVII
第一章 緒論..............................................................................................1
1.1 研究動機......................................................................................1
1.2 助聽器介紹..................................................................................2
1.2.1回饋音消除…....................................................................3
1.2.2噪音消除............................................................................4
1.2.2麥克風介紹........................................................................5
1.2.2 方向性麥克風...................................................................6
1.3 文獻探討....................................................................................10
1.3.1陣列訊號簡介..................................................................13
1.3.2 到達角估測.....................................................................14
1.3.3獨立成份分析法………………………………………..15
1.4 研究目標………………………………………………………16
1.5 論文架構………………………………………………………17
第二章 助聽器的麥克風輸入介紹........................................................18
2.1全方向性和方向性麥克風介紹.................................................19
2.2 Beamformer介紹........................................................................20
2.3適應性濾波器(Adaptive Filter)的原理......................................23
2.4 GN ReSound Canta助聽器-麥克風輸入策略...........................27
2.5 Siemens Aktiengesellschaft助聽器-麥克風輸入策略...............36
2.6 Oticon Syncro助聽器-麥克風輸入策略....................................39
2.7 Griffiths-Jim Beamformer助聽器-麥克風輸入策略………….41
第三章 助聽器模擬平台........................................................................44
3.1實驗平台架構.............................................................................44
3.2實驗語料.....................................................................................48
3.3噪音消除評量方法…………………………………………….50
3.4助聽器模擬平台介面………………………………………….52
第四章 結果............................................................................................55
4.1麥克風策略結果.........................................................................55
4.2麥克風策略在高背景噪音環境.................................................63
4.3麥克風策略結合噪音消除結果.................................................66
4.3.1麥克風策略方法-GN ReSound Canta&Sonic Innovation Natura結合噪音消除策略.............................................66
4.3.2麥克風策略方法-Siemens Aktiengesellschaft結合噪音消除策略.............................................................................70
4.3.3麥克風策略方法-Oticon Syncro Natura結合噪音消除策略……………………………………………………….74
4.3.4麥克風策略方法-Griffiths-Jim Beamformer結合噪音消除策略………………………………………………….78
4.4麥克風策略加噪音消除策略與WDRC結合............................85
4.5改變收斂係數對於麥克風策略的影響………………………87
第五章 討論……………........................................................................89
5.1麥克風策略結果評量… ...........................................................89
5.1.1主觀評量………………………………………………..89
5.1.2客觀評量………………………………………………..90
5.1.3麥克風策略在高背景噪音情況………………………..91
5.2麥克風策略結合噪音消除策略結果評量.................................91
5.2.1主觀評量………………………………………………..91
5.2.2客觀評量………………………………………………..92
5.3Griffiths-Jim Beamformer採用不同麥克風的比較....................94
第六章 結論與未來展望………………………………………………98
6.1結論...........................................................................................98
6.2未來展望……………………………………………………...99
附錄A.....................................................................................................100
參考文獻………………………………………………………………101
參考文獻 Barthel, R., Bauml, R., and Fischer, E. (2007). "Differential directional microphone system and hearing aid device with such a differential directional microphone system," in United States Patent 20080212814 (Siemens Aktiengesellschaft).
Bell, A. J., and Sejnowski, T. J. (1995 ). "An information-maximization approach to blind separation and blind deconvolution," Neural Computation 7, 1129-1159.
Cohen, I. (2004). "Multichannel post-filtering in nonstationary noise environments," IEEE Transactions on Signal Processing 52, 1149-1160.
Frost, O. L., III (1972). "An algorithm for linearly constrained adaptive array processing," Proceedings of the IEEE 60, 926-935.
Griffiths, L., and Jim, C. (1982). "An alternative approach to linearly constrained adaptive beamforming," IEEE Transactions on Antennas and Propagation 30, 27-34.
Groen, J. J. (1969). "Social hearing handicap : its measurement by speech audiometry in noise," International Journal of Audiology 8, 182-183.
Hamacher, V., Chalupper, J., Eggers, J., Fischer, E., Kornagel, U., Puder, H., and Rass, U. (2005). "Signal processing in high-end hearing aids: state of the Art, challenges, and future trends," EURASIP Journal on Applied Signal Processing 2005, 2915-2929.
Hansen, W., and Woodyard, J. R. (1938). "A new principle in directional antenna design," Proceedings of the Institute of Radio Engineers, 26:333–345.
Haykin, S. (2002). Adaptive Filter Theory (Prentice-Hall, Inc.).
Johnson , D., and Dudgeon, D. (1993). Array Signal Processing: Concepts and Techniques (New Jersey ).
Kochkin, S. (1996). "Customer satisfaction and subjective benefit with high performance hearing aids," Hearing Review, 3(12): 16-26.
L.O.C. (2002). "Emile Berliner," in http://memory.loc.gov/ammem/berlhtml/berlhome.html.
Lee, T.-W. (1998). Independent Component Analysis: Theory and Applications (Kluwer Academic Publishers, Boston).
Luo, F.-L., EDWARDS, B., KATES, J., M., and MICHAEL, N. (2000). "Fixed Polar-Pattern-Based Adaptive Directionality Systems," in United States Patent 09/593,266 (GN RESOUND CORPORTATION ).
NOISE-92 (1993) in http://spib.rice.edu/spib/select_noise.html.
Omologo, M., and Svaizer, P. (1997). "Use of the crosspower-spectrum phase in acoustic event location," IEEE Transactions on Speech and Audio Processing 5, 288-292
Peterson, P., Durlach, N., Rabinowitz, W., and Zurek , P. (1987). "Multimicrophone adaptive beamforming for interference reduction in hearing aids," Journal of Rehabilitation Research & Development 24, 103-110.
Plomp, R. (1978). "Auditory handicap of hearing impairment and the limited benefit of hearing aids," The Journal of the Acoustical Society of America 63, 533-549.
Plomp, R., and Mimpen, A. M. (1979). "Speech-reception threshold for sentences as a function of age and noise level," The Journal of the Acoustical Society of America 66, 1333-1342.
Pritchard, R. L. (1954). "Maximum Directivity Index of a Linear Point Array," The Journal of the Acoustical Society of America 26, 21-27.
Rasmussen, K. B. (2007). "Microphone System With Directional Response," in United States Patent 7,212,642 (Oticon Syncro).
Sandlin, R. E. (2000). Textbook of hearing aid amplification (Singular Publishing Group, San Diego, California ).
Sonic. "Velocity Open BTE," in http://www.sonicinnovations.com/ctrldocs/4001339.A-IntlGenericUG-Velocity4OpenBTEGuide.pdf.
Spriet, A., Van Deun, L., Eftaxiadis, K., Laneau, J., Moonen, M., Van Dijk, B., Van Wieringen, A., and Wouters, J. (2007). "Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System," Ear and Hearing 28, 62-72.
Vanden Berghe, J., and Wouters, J. (1998). "An adaptive noise canceller for hearing aids using two nearby microphones," The Journal of the Acoustical Society of America 103, 3621-3626.
Wax, M., Shan, T. J., and Kailath, T. (1984). "Spatio-temporal spectral analysis by eigenstructure methods," IEEE Trans. Acoust., Speech, Signal Processing 32, 817-827.
Wim , S., Augustinu, J. B., and Frans , A. B. (1993). "Development of a directional hearing instrument based on array technology," The Journal of the Acoustical Society of America 94, 785-798.
內政部統計處 (2010). "九十九年第七週內政統計通報(98年底列冊身心障礙者人數統計)," in http://www.moi.gov.tw/stat/news_content.aspx?sn=3854.
王小川 (2007). 語音訊號處理 (全華圖書股份有限公司, 台灣, 台北).
王永華 (2006). 認識助聽器 (科林儀器股份有限公司, 台灣, 台北).
王基峰 (2002). "數位助聽器研發平台之建構," 國立臺灣大學電機工程學研究所碩士論文
何克男 (2009). "應用ESIF 陣列技術來改善語音的品質," 國立交通大學機械工程學系碩士論文
汪正剛 (2008). "多聲源方位偵測與聲源數量估算," 國立交通大學電機與控制工程研究所碩士論文.
林柏勛 (2009). "以軟體為基準的助聽器模擬平台之發展-回饋音消除 " 國立中央大學電機工程研究所碩士論文.
孫藍蕙 (2006). "以OMAP5912實現語者方位判定於輪式機器人平台," 國立交通大學電機與控制工程研究所碩士論文.
許詠傑 (2009). "以軟體為基準的助聽器模擬平台之發展-噪音消除," 國立中央大學電機工程研究所碩士論文.
黃銘緯 (2005). "台灣地區噪音下漢語語音聽辨測試," 國立台北護理學院聽語障礙科學研究所碩士論文.
蔡政哲 (2006). "獨立成份分析法於真實環境中聲音訊號分離之探討," 國立中央大學電機工程研究所碩士論文.
指導教授 吳炤民(Chao-Min Wu) 審核日期 2010-8-27 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare