國立中央大學100學年度碩士班考試入學試題卷 所別:<u>統計研究所碩士班 不分組(一般生)</u> 科目:<u>數理統計 共 — 頁 第 — 頁</u> 本科考試可使用計算器,廠牌、功能不拘 *請在試卷答案卷(卡)內作答 1. Let $X_1,...,X_n$ be i.i.d. random variables with p.d.f. $f(\cdot;\theta_1,\theta_2)$ given by $$f(x; \theta_1, \theta_2) = \frac{1}{\theta_2} \exp(-\frac{x - \theta_1}{\theta_2}),$$ where $x > \theta_1, \theta = (\theta_1, \theta_2)' \in \Omega = \Re \times (0, \infty)$. Find the MLE's of θ_1, θ_2 . (15%) 2. Let X_1 and X_2 have the joint p.d.f. $f(x_1, x_2)$ described as follows: | (x_1, x_2) | (0,0) | (0,1) | (1,0) | (1,1) | (2,0) | (2.1) | |--------------|-------|-------|-------|-------|-------|-------| | $f(x_1,x_2)$ | 1/18 | 3/18 | 4/18 | 3/18 | 6/18 | 1/18 | and $f(x_1, x_2)$ is equal to zero elsewhere. (a) Find the marginal probability density functions for X_1 and X_2 . (10%) (b) Find the conditional mean of X_1 given $X_2 = x_2$. (10%) - 3. Let Y_1 and Y_2 be two independent unbiased estimators of θ . The variance of Y_1 is twice variance of Y_2 . Find the constants of k_1 and k_2 so that $k_1Y_1 + k_2Y_2$ is an unbiased estimator with smallest possible variance for such a linear combination. (15%) - 4. Let X and Y be random variables with means μ_1 , μ_2 ; variances σ_1^2 , σ_2^2 ; and correlation coefficient ρ . Show that the correlation coefficient of W = aX + b, a > 0, and Z = cY + d, c > 0, is ρ . - 5. Let X_1 and X_2 be independent random variables distributed as exponential with parameter $\lambda=1$. The p.d.f. $f(x)=\exp(-x)$, x>0. (a) Derive the p.d.f. of $X_1 + X_2$ and X_1 / X_2 , respectively. (10%) (b) Show that $X_1 + X_2$ and X_1 / X_2 are independent. (10%) 6. Let us assume that the life of a tire in miles, say X, is normally distributed with mean θ and standard deviation 5000. Past experience indicates that θ =30000. The manufacturer claims that the tires made by a new process have mean θ > 30000. Let check his calim by testing $H_0: \theta \leq 30000$ vs. $H_1: \theta > 30000$. We shall observe n independent values of X, say $x_1, ..., x_n$, and we shall reject H_0 if and only if $x \ge c$. Determine sample size n and c so that power is 0.98 when θ =35000 at the level of significance α =0.01. (Note that $z_{0.01} = -2.326, z_{0.98} = 2.05$)