國立中央大學100學年度碩士班考試入學試題卷

- 1. (10%) Find (a) $\int_{a}^{b} \frac{1}{\sqrt{1+x^2}} dx$, (b) $\int_{a}^{b} \frac{1}{\sqrt{x^2-1}} dx$, for a,b > 1 or a,b, < 1;
- 2. (10%) Find the volume of the solid by rotating the region bounded by the curves xy = 2, xy = 4, x = 1 and x = 2 about the y-axis.
- 3. (10%) Find the Taylor series at 0 for the following function: $f(x) = \frac{1}{\sqrt{1-x}} = (1-x)^{-1/2}$
- 4. (10%) Use the root test to find the radius of convergence of the following power series: $\sum_{n=1}^{\infty} \frac{n}{2^n} z^n.$
- 5. (10%) Find the following: (a) $\lim_{y\to 0} \log(1+y)/y$ (b) $\lim_{y\to \infty} y \log(1+1/y)$
- 6. Let $g: N \to N$ be a function such that g(n+1) > g(n) for each n. Prove that for each $n \in N$, $g(n) \ge n$. (15 points)
- 7. Show that a sequence converges if and only if each of its subsequences converges. (20 points).

Hint: From the definition of subsequences and result from Problem 6. Definition of subsequences: If $\{x_n\}$ is a sequence and $g: N \to N$ is a sequence such that g(n+1) > g(n) for each $n \in N$ then $\{x_{g(n)}\}$ is a subsequence of $\{x_n\}$

8. Let $x_1 = \sqrt{6}$ and for n > 1 let $x_n = \sqrt{x_{n-1} + 6}$. Prove that $\{x_n\}$ converges and find the limits. (15 points)

Hint: Need to show that $\{x_n\}$ is increasing