博碩士論文 973202044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.138.69.153
姓名 官毅明(I-Ming Guan)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鹼-矽膠體的形貌與組成
(Morphology and composition of alkali–silica gel))
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本文利用掃描式電子顯微鏡(SEM)、微區元素分析(EDS)及X光粉末繞射儀(XRD)等儀器進鹼-骨材反應生成物(鹼-矽膠體)進行一系列的微觀分析,探討鹼-矽膠體於形貌、元素組成及化學組成的特性。本研究所觀察之鹼-矽膠體主要生成於混凝土角柱及砂漿棒表面、裂縫以及開裂面,而混凝土試體使用之骨材來源為國內花東沿岸及南部里港溪,經檢測確定具有鹼-骨材反應危害性、並持續置放於不同的養治環境下,外觀產生顯著開裂且生成白色膠體。經由微觀分析結果發現,隨著控制變因不同,鹼-矽膠體具有不同的結晶形貌、其組成亦有不同特徵性,利用此種特性建立一套鑑定鹼-矽膠體之準則、作為輔助確認混凝土試體具有鹼-骨材反應危害性的另一佐證,並提供後續相關研究之應用。
摘要(英) ABSTRACT
This research used aggregates from the seacoast of Hualien and Taitung the South Ligang River in Taiwan to make concrete prisms and mortar bars. And first tested aggregates to learn that they indeed had the hazardous of alkali-silica reaction. Then the concrete prisms and mortar bars were placed in several curing conditions. It was observed that cracks and some white gel, which was called ASR gel, was produced under the research environment. The ASR gel was seen within the surface, cracks, and surface grooves of the samples. The crystalline alkali-silica reaction product (ASR gel) is characterized by scanning electron microscope(SEM), quantitative X-ray energy dispersive spectrometry(EDX) and X-ray diffraction(XRD).
Based on the results of the microscopic analysis, the research built the correlation of composition and morphology, and created criteria for the finding of the ASR gel. Overall, the research serves as an affirmation of Alkali-Aggregate Reaction and a follow-up study of its application.
關鍵字(中) ★ 鹼-骨材反應
★ 掃描式電子顯微鏡
★ 微區元素分析
★ X光粉末繞射儀
★ 鹼-矽膠體
關鍵字(英) ★ ASR gel
★ Alkali-Aggregate Reaction
★ Petrography
★ EDX
★ SEM
★ X-ray diffraction
論文目次 目錄
摘要 I
ABSTRACT II
目錄 III
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1.1 研究動機與目的 2
1.2 研究範圍 4
1.3 研究方法 4
1.4 論文內容與架構 5
第二章 文獻回顧 6
2.1 鹼-骨材反應膠體 6
2.1.1 鹼-矽反應機制 7
2.1.2 鹼-矽膠體破壞機制 8
2.1.3 鹼-矽膠體之形貌 9
2.1.4 鹼-矽膠體之組成 14
2.2 活性粒料之檢測 17
2.3 水泥 20
2.3.1 水泥水化機制 20
2.3.2 一般水泥水化生成物 22
2.3.3 延遲性鈣礬石 26
2.3.4 水泥中的鹼 26
2.4 水 28
2.5 鹼-矽膠體的微觀分析 29
2.5.1 掃描式電子顯微鏡(Scanning Electron Microscope;SEM)原理 29
2.5.2 微區元素分析(Energy Dispersive Spectrometer;EDS)原理 36
2.5.3 X光繞射分析儀(X-ray diffraction;XRD)原理 37
第三章 試驗計劃與方法 41
3.1 試驗規劃: 41
3.2 試驗材料 49
3.2.1 水泥 49
3.2.2 骨材 50
3.2.3 氫氧化鈉藥劑 55
3.2.4 試體介紹 56
3.3 試驗方法與步驟 58
3.3.1 儀器介紹 58
3.3.2 試體之製作 62
3.3.3 儀器之使用及試體觀察 67
第四章 試驗結果與分析案例驗證 73
4.1 試體介紹 73
4.1.1 前人製作之混凝土試體 75
4.1.2 里港砂混凝土試體 78
4.1.3 特殊混凝土試體 82
4.2 試體表面白色生成物 83
4.3 光學顯微鏡(OM)觀察 85
4.4 掃描式電子顯微鏡(SEM)觀察 87
4.4.1 一般水泥觀察 87
4.4.2 蒸氣養護試體觀察 88
4.4.3 特殊角柱試體觀察 91
4.4.4 加速水泥砂漿棒(ASTM C1260)試體觀察 92
4.5 白色生成物分析 94
4.5.1 粉狀結晶生成物 94
4.5.2 白色膠狀物 99
4.6 鹼-矽膠體 108
4.6.1 微區元素分析(EDS) 108
4.6.2 膠體形貌影響因素探討 122
4.6.3 膠體組成變因探討 125
4.6.4 文獻比較 127
4.6.5 現地試體之應用 134
4.6.6 X光粉末繞射儀(XRD)分析 142
第五章 結論與建議 145
5.1 結論 145
5.2 建議 147
參考文獻 148

參考文獻 參考文獻
1. 田永銘,「混凝土鹼質粒料反應防制對策及評估」,國立中央大學土木所研究報告,台北市:國道工程局(2006)。
2. 田永銘,「橋梁鹼-骨材反應之檢測及修復技術」,國立中央大學土木工程學系期末報告書,中壢:財團法人中華顧問工程司(2008)。
3. 李驊登,「掃描式電子顯微鏡之原理及功能 (下)」,科儀新知,第11卷,第2期,第50–62 頁(1989)。
4. 李驊登,「掃描式電子顯微鏡之原理及功能 (上)」,科儀新知,第11卷,第1期,第44–52 頁(1989)。
5. 林麗娟,「X 光繞射原理及其應用」,工業材料,第86期,第1-100頁(1994)。
6. 張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
7. 張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
8. 許樹恩、吳泰伯,X光繞射原理與材料結構分析,國科會精儀中心,台北(1993)。
9. 教育部高職進修鑄工科網站。材料分析技術。台南:南台科技大學。網址:http://elearning.stut.edu.tw/。上網日期:2010-06-16。
10. 黃永盛,「SEM/EDS 與 FIB 的原理及其在半導體工業之應用」,科儀新知,第 17 卷,第 3 期,第36–54 頁(1995)。
11. 黃兆龍,混凝土性質與行為,詹氏書局,台北(1997)。

12. 邵國瑋,「卜作嵐材料抑制鹼-骨材反應之成效評估」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
13. 邱薰頤,「蒸汽養護對鹼-骨材反應之影響」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
14. ASTM C227-97, ”Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02(2004).
15. ASTM C289-02, ”Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02 (2004).
16. ASTM C295-03, ”Standard Guide for Petrographic Examination of Aggregates for Concrete,” Annual Book of ASTM Standards, Section 4, Vol.04.02 (1999).
17. ASTM C1260-01, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual book of ASTM Standards, pp. 644-647 (2004).
18. ASTM C1293-01,“Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete due to Alkali-Silica Reaction,” Annual Book of ASTM Standards, pp.648-653 (2004).
19. Callister, W.D., Jr, Materials Science and Engineering An Introduction, John Wiley and sons Inc.,(2003)
20. Diamond, S., “Resolution of fine fibrous C-S-H in backscatter SEM examination,” Cement & Concrete Composites, Vol. 28, pp. 130–132, (2005).
21. Durand., B. and Berard, J.,“Use of gel composition as a criterion for diagnosis of alkali-aggregate reactivity in concrete containing siliceous limestone aggregate,” Materials and Structures, Vol. 20, pp.39-43(1987).
22. Fournier, B., and Bérubé, M.A. “Alkali-aggregate reaction in concrete: a review of basic concepts and engineering implications”, Canadian Journal of Civil Engineering, Vol.27, pp.167-191, (2000).
23. Fernandes, I., Noronha, F., and Teles, M., “Examination of the concrete from an old Portuguese dam: Texture and composition of alkali–silica gel,”Materials Characterization, Vol. 58, pp. 1160-1170(2007).
24. Fernandes, I., “Composition of alkali–silica reaction products at different locations within concrete structures,” Materials Characterization, Vol. 60, pp. 655-668( 2009).
25. Fernandes, I., Noronha, F., and Teles, M.,” Microscopic analysis of alkali–aggregate reaction products in a 50-year-old concrete,”Materials Characterization, Vol. 53, pp. 295-306( 2004).
26. Hobbs, D.W., Alkali-Silica Reaction in Concrete, Thomas Telford,London, (1988).
27. Jana, D.,“Sample Preparation Techniques in Petrographic Examinations of Construction Materials: A State-of-the-art Review,” Proceedings of the 28th Conference on Cement microscopy, ICMA, pp. 23-70,(2006).

28. Katsioti, M., Giannikos, D., “Properties and hydration of blended cements with mineral alunite “Construction and Building Materials, Vol. 23, pp.1011-1021(2009).
29. Katayama, T., “A critical review of carbonate rock reactions--is theirreactivity useful or harmful? “Proceedings 9th International Conference on Alkali-Aggregate Reaction in Concrete, London, pp. 508–518,(1992).
30. Lim, S., Zollinger, D. G., and Sarkar, S. L., “Evaluation of ASR Distress in Airfield Concrete Pavements,” 2002 FAA Airport Technology Transfer Conference, pp.34-56(2002).
31. Mindess, S., and Young, J.F.,Concrete,Prentice-Hall Inc., Englewoad Cliffs, N.J.,(1981).
32. Marusin, S. L.,” Sample preparation — the key to SEM studies of failed concrete,”Cement and Concrete Composites, Vol. 17, pp. 311-318 (1995).
33. Peterson, K., Gress. D., Dam, T. V., and Sutter, L., “Crystallized alkali-silica gel in concrete from the late 1890s,”Cement and Concrete Research, Vol. 36, pp. 1523-1532 (2006).
34. Owsiak, Z.,”Testing alkali-reactivity of selected concrete aggregates,” Journal of Civil Engineering and Management, Vol. 13, pp. 201–207(2007).
35. Shayan, A.,“AAR-Affected Concrete Piles in Two RTA Bridges Under Aggressive Marine Conditions,” 22nd ARRB Conference– Research into Practice, Canberra , Australia, (2006).
36. Stanton, T.E., “Expansion of concrete through reaction between cement and aggregates,” Proceedings of The American Society of Civil Eng, (1940).
37. Tomosawa, F., Tamura, K., and Abe, M. “Influence of Water Content of Concrete on Alkali-Aggregate Reaction,” Proceeding 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp.881-885,(1989).
38. Thaulow, N., Andersen, K.T., and Holm, J., “Petrographic Examination and Chemical Analyses of The Lucinda Jetty Prestressed Concrete Roadway,” 8 International Conference on Alkali-Aggregate Reaction, pp.573-581 (1989).
39. Thaulow, N., Jakobsen, U. H., and Clark, B., “Composition of alkali silica gel and ettringite in concrete railroad ties: SEM-EDX and X-ray diffraction analyses,”Cement and Concrete Research, Vol. 26, pp. 309-318(1995).
40. Tang, M., “Classification of alkali-aggregate reaction,” Proceedings 9th International Conference on Alkali-Aggregate Reaction in Concrete, London, pp. 6348–6353 (1992).
41. Taylor, H.F.W., “Delayed ettringite formation,” Cement and Concrete Research, Vol. 31, pp. 683-693(2001).
42. Tambelli, C.E., Schneider, J.F. “Study of the structure of alkali–silica reaction gel by high-resolution NMR spectroscopy,” Journal of Non-Crystalline Solids, Vol. 352, pp. 3429-3436(2006).

43. U.S. Department of Transportation FAA, “Handbook for Identification of. Alkali-Silica Reactivity in Airfield Pavements,” Advisory Circular, No: 150/5380-8(2004).
指導教授 劉正毓、田永銘
(Cheng-yi Liu、Yung-Ming Tien)
審核日期 2011-1-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明