博碩士論文 953403032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:18.190.25.53
姓名 廖俊忠(Chun-Chung Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 濕顆粒體的動態特性與混合機制
(The Dynamic Properties and Mixing Mechanisms in Wet Granular Matter)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文為研究探討濕顆粒材料物質的動態運動行為與混合的機制。本篇研究以實驗方法去量測剪力顆粒流體的傳輸性質,並探討在不同的間隙流體黏度下顆粒流體的流動行為。並利用影像分析方法,成功的量測到粒子的平均速度、擾動速度、粒子溫度以及粒子的擴散係數。由實驗結果指出,間隙流體在顆粒流體的傳輸特性上扮演著重要的角色,在乾系統時(間隙流體為空氣),粒子的運動更為隨機且粒子間的互相碰撞也更為激烈。當間隙流體的黏滯度越大,相對的也產生越大的黏滯阻力,因此粒子的擾動速度及粒子溫度也相對的變小。隨著間隙流體黏度的減小,剪細帶的厚度大約從三顆粒子的粒徑成長到八顆粒子的粒徑。本篇研究也針對粒子的擴散係數做討論,並發現到粒子的擴散係數與粒子溫度皆隨著剪率的變大而提升,且在流場方向整體平均的擴散係數及粒子溫度會隨著史托克數與貝格諾數的增加而變大。
藉由添加微量液體於顆粒物質,並探討濕粒子間液橋力對於剪力顆粒流動態行為的影響。由實驗的結果,可以發現當添加微量液體於顆粒材料以及改變轉速皆會對顆粒的動態運動特性有很明顯的影響,這主要原因是粒子間由於液橋的形成與斷裂過程中粒子的能量被消散所致。且由於液橋的建立與斷裂所造成的能量消散會隨著轉速的提升與添加液體黏度的變大而增加。液橋力對於濕顆粒物質動態運動性質的影響強弱皆會受到添加微量液體的黏滯度與顆粒系統的動能大小而定。
最後本篇論文也研究間隙流體的黏度對於轉鼓中顆粒動態運動過程下混合速率的影響。實驗過程中,藉由固定轉速使流場落在滾動的流態,此時在自由表面的流動層的粒子流動是一個連續的流動。從實驗結果發現,粒子的特徵速度會隨著間隙流體黏度的變大而變慢,但粒子的混合速率卻會隨著間隙流體黏度的提升而變快。這些發現跟我們所提出的一個簡單物理模式相吻合,並發現粒子的混合速率主要是跟流動層厚度的大小有關。另外,由實驗結果指出當史托克數減小時,可能存在一個轉折點從慣性力主導的流態轉變為黏滯力主導的流態。
整體而言,當改變粒子間微觀的作用力時,顆粒系統宏觀的物理量也會受到很大的影響,且效應會由於不同的顆粒系統而有所差異。
摘要(英) This thesis investigates the dynamic behaviors and mixing mechanisms in wet granular materials. The experimental measurements of transport properties in sheared granular materials with different interstitial fluids are reported by image processing technique and particle tracking velocimetry. The results indicate that the interstitial fluid plays an important role in determining the transport properties of the granular flow. The values of fluctuations and granular temperatures are smaller as the interstitial fluid is more viscous resulting in the larger viscous drag force. The thickness of shear band is about three to eight particle diameters and increases with the decrease of the interstitial fluid viscosity. The self-diffusion coefficient of granular materials is also discussed in this study. Both the self-diffusion coefficients and the granular temperature increase with increasing the shear rate. The average streamwise self-diffusion coefficient and granular temperature increase with the increase of Bagnold number.
To quantify the effect of the liquid bridge force on dynamic properties in wet granular systems. A series of experiments are also performed to measure the dynamic properties of wet granular matter in a shear cell. The results show that adding small amounts of liquid with different viscosities and changing the wall velocity, both have significant influences on the dynamic properties of wet granular matter due to the formation and rupturing of liquid bridges. The energy dissipation due to the formation and rupturing of the liquid bridges increases with increasing the wall velocity and the increase of liquid viscosity. The effect of the liquid bridge force on the dynamic properties is not only dependent on the liquid viscosity but also on the kinetic energy of the granular system.
Finally, the effects of interstitial fluid viscosity on the mixing rates of dynamical processes in a quasi-2D thin rotating drum half-filled with monodisperse glass beads are studied. The flow behavior is fixed at the rolling regime. While the characteristic speed of a bead in the flowing layer decreases with the fluid viscosity μ, the mixing rate of the beads is found to increase with μ. These findings are consistent to a simple model related to the thickness of the flowing layer. In addition, the results indicate a possible transition from the inertial limit regime to the viscous limit regime when the Stokes number is reduced.
The overall of thesis, changing the microscopic mechanics between particles has significant influences on macroscopic physical quantities of granular systems. Additionally, the effects are not the same with different granular systems.
關鍵字(中) ★ 流動層厚度
★ 混合速率
★ 轉鼓
★ 液橋力
★ 自擴散
★ 剪細帶
★ 間隙流體黏度
★ 剪力槽
關鍵字(英) ★ Shear
★ Interstitial fluid viscosity
★ Shear cell
論文目次 摘要 i
Content vi
List of Figures ix
List of Tables xiv
List of Symbols xv
Chapter 1 1
Overview of Granular Flows 1
1.1 Introduction 1
1.2 The granular flow behaviors with different external driven force 3
1.2.1 Shear granular flow 3
1.2.2 Gravity-driven granular flow 5
1.2.3 The behaviors of granular flow under vibration 8
1.3 Wet granular matter 9
1.3.1 Wet granular matter with a small amount of liquid 9
1.3.2 Wet granular matter immersed in liquid 13
1.4 Electrostatic charges in granular matter 17
1.5 Mixing and segregation in granular matter 19
1.6 Motivation of this thesis 23
1.7 Overview of this thesis 26
Chapter 2 37
The Experiments Set Up and Analyses 37
2.1 The apparatus of shear cell 37
2.2 The apparatus of rotating drum 39
2.3 Image processing and particle tracking techniques 40
2.4 The procedure of adding small amount of liquid to granular matter and liquid bridges observation 45
2.5 Mixing index and flowing layer thickness (mixing zone thickness) measurement techniques 47
Chapter 3 59
Influence of Interstitial Fluid Viscosity on Transport Phenomenon in Sheared Granular Materials 59
3.1 Preface 59
3.2 Results and discussion 60
3.3 Summary 70
Chapter 4 83
Experimental Analysis of Dynamic Properties in Wet Sheared Granular Matter 83
4.1 Preface 83
4.2 Results and discussion 83
4.3 Summary 95
Chapter 5 107
Granular Dynamics and Mixing Mechanisms of a Slurry in a Rotating Drum 107
5.1 Preface 107
5.2 Results and discussion 108
5.3 Summary 115
Chapter 6 123
Concluding Remarks 123
Bibliography 126
參考文獻 J. O. Aidanpää, H. H. Shen, and R. B. Gupta, “Experimental and numerical studies of shear layers in granular shear cell,” J. Eng. Mech. 122, 187 (1996).
J. R. L. Allen, “The avalanching of granular solids on dune and similar slopes,” J. Geol. 78, 326 (1970).
A. Anand, J. S. Curtis, C. R. Wassgren, B. C. Hancock, and W. R. Ketterhagen, “ Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM),” Chem. Eng. Sci., 64, 5268 (2009).
R. A. Bagnold, “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear,” Proc. R. Soc. Lond. A 225, 49 (1954).
C. Bacher, P.M. Olsen, P. Bertelsen, and J.M. Sonnergaard, “Compressibility and compactibility of granules produced by wet and dry granulation,” Int. J. Pharm. 358, 69 (2008).
A. G. Bailey, and C. J. A. Smedley, Impact charging of polymer particles,” Adv. Powder Technol. 2, 277 (1991).
W. A. Beverloo, H. A. Leniger, and van de Velde, “The flow of granular solids through orifices,” Chem. Eng. Sci., 15, 260 (1961).
A. P. J. Breu, H. M. Ensner, C. A. Kruelle, and I. Rehberg, “Reversing the Brazil-Nut Effect: Competition between Percolation and Condensation,” Phys. Rev. Lett. 90, 014302 (2003).
R. Brito, H. Enríquez, S. Godoy, and R. Soto, “Segregation induced by inelasticity in a vibrofluidized granular mixture,” Phys. Rev. E 77, 061301 (2008).
H. Buggish, and G. Löffelmann, “Theoretical and experimental investigation into local granulate mixing mechanism,” Chem. Eng. Process. 26, 193 (1989).
G. Bunin, Y. Shokef, and D. Levine, “Frequency-dependent fluctuation-dissipation relations in granular gases,” Phys. Rev. E 77, 051301 (2008).
C. S. Campbell, and C. E. Brennen, “Computer simulation of granular shear flows,” J. Fluid Mech. 151, 167 (1985).
C. S. Campbell, “Rapid granular flows,” Annu. Rev. Fluid Mech. 22, 57 (1990).
C. S. Campbell, “Self-diffusion in granular shear flows,” J. Fuild Mech. 348, 85 (1997).
C. S. Campbell, “Granular material flows- an overview,” Powder Technol., 162, 208 (2006).
B. Chaudhuri, A. Mehrotra, F. J. Muzzio, and M. S. Tomassone, “Cohesive effects in powder mixing in a tumbling blender,” Powder Technol., 165, 105 (2006).
A. H. Chen, H. T. Bi, and J. R. Grace, “Measurement of particle charge-to-mass ratios in a gas-solids fluidized bed by a collision probe,” Powder Technol. 135, 181 (2003).
S. H. Chou, C. C. Liao, and S. S. Hsiau, “An experimental study on the effect of liquid content and viscosity on particle segregation in a rotating drum,” Powder Technol. 201, 266 (2010).
P. W. Cleary, “DEM simulation of industrial particle flows: case studies of dragline excavators, mixing in tumblers and centrifugal mills,” Powder Technol. 109, 83 (2000).
C. P. Clement, H. A. Pacheco-Martinez, M. R. Swift, and P. J. King, “The water-enhanced Brazil nut effect,” EPL 91, 54001 (2010).
M. P. Ciamarra, M. D. D. Vizia, A. Fierro, M. Tarzia, A. Coniglio, and M. Nicodemi, “Granular species segregation under vertical tapping: effects of size, density, friction, and shaking amplitude,” Phys. Rev. Lett. 96, 058001 (2006).
W. Cooke, S. Warr, J.M. Huntley, and R. C. Ball, “Particle size segregation in a two-dimensional bed undergoing vertical vibration,” Phys. Rev. E 53, 2812 (1996).
S. Courrech du Pont, P. Gondret, B. Perrin, and M. Rabaud, “Granular avalanches in fluids,” Phys. Rev. Lett. 90, 044301 (2003).
P. Coussot, and C. Ancey, “Rheophysical classification of concentrated suspensions and granular pastes,” Phys. Rev. E 59, 4445 (1999).
P. A. Cundall, and O. D. L. Strack, “A discrete numerical model for granular assemblies,” Géotechnique 29, 47 (1979).
N. Duff, and D.J. Lacks, “Particle dynamics simulations of triboelectric charging in granular insulator systems,” J. Electros. 66, 51 (2008).
J. Duran, J. Rajchenbach, and E. Clément, “Arching effect model for particle-size segregation,” Phys. Rev. Lett. 70, 2431 (1993).
C. M. Dury, and G. H. Ristow, “Competition of mixing and segregation in rotating cylinders,” Phys. Fluid 11, 1387 (1999).
A. Einstein, “Investigations on the Theory of Non-Uniform Gases,” New York: Dover Publ. Co. Chap. 1, 12 (1956).
H. Eliasen, H.G. Kristensen, and T. Shafer, “Electrostatic charging during a melt agglomeration process,” Int. J. Pharm. 184, 85 (1999).
R. Elsdon, and F. R. G. Mitchell, “Contact electrification of polymers,” J. Phys. D-Appl. Phys. 9, 1445 (1976).
B. J. Ennis, J. Green, and R. Davies, “The legacy of neglect in the U.S.,” Chem. Eng. Prog., 90, 32 (1994).
B.J. Ennis, G. Tardos and R. Pfeffer, “A microlevel-based characterization of granulation phenomena,” Powder Technol. 65, 257 (1991).
D. Eskin, and H. Kalman, “A numerical parametric study of size segregation in a rotating drum,” Chem. Eng. Process, 39, 539 (2000).
P. Evesque, “Analysis of the statistics of sandpile avalanches using soil-mechanics results and concepts,” Phys. Rev. A 43, 2720 (1991).
D. Fenistein, J. W. van de Meent, and M. van Hecke, “Universal and wide shear zones in granular bulk flow,” Phys. Rev. Lett. 92, 094301 (2004).
C. Ferrera, M.G. Cabezas, and J.M. Montanero, “An experimental analysis of the linear vibration of axisymmetric liquid bridges,” Phys. Fluids 18, 082105 (2006).
S. J. Fiedor, and J. M. Ottion, “Dynamics of axial segregation and coarsening of dry granular materials and slurries in circular and square tubes,” Phys. Rev. Lett. 91, 244301 (2003).
A. Fingerle, and S. Herminghaus, “Unclustering transition in freely cooling wet granular matter,” Phys. Rev. Lett. 97, 078001 (2006).
A. Fingerle, K. Roeller, K. Huang, and S. Herminghaus, “Phase transitions far from equilibrium in wet granular matter,” New J. Phys. 10, 053020 (2008).
T. Finger, and R. Stannarius, “Influences of the interstitial liquid on segregation patterns of granular slurries in a rotating drum,” Phys. Rev. E 75, 301308 (2007).
G. J. Finnie, N. P. Kruyt, M. Ye, C. Zeilstra, and J. A. M. Kuipers, “Longitudinal and transverse mixing in rotary kilns: A discrete element method approach,” Chem. Eng. Sci. 60, 4083 (2005).
R. A. Fisher, “On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines,” J. Agric. Sci. 16, 492 (1926).
N. Fraysse, H. Thomé, L. Petit, “Humidity effects on the stability of a sandpile,” Eur. Phys. J. B 11, 615 (1999).
D. Geromichalos, M. M. Kohonen, F. Mugele, and S. Herminghaus, “Mixing and condensation in a wet granular medium,” Phys. Rev. Lett. 90, 168702 (2003).
R. Gosselin, C. Duchesne, and D. Rodrigue “On the characterization of polymer powders mixing dynamics by texture analysis,” Powder Technol. 183, 177 (2008).
D. S. Grebenkov, M. P. Ciamarra, M. Nicodemi, and A. Coniglio, “Flow, ordering, and jamming of sheared granular suspensions,” Phys. Rev. Lett. 100, 078001 (2008).
Z. Grof, C. J. Lawrence, and F. Štěpánek, “Computer simulation of evolving capillary bridges in granular media,” Granul. Matter 10, 93 (2008).
T. C. Halsey, and A. J. Levine, “How sandcastles fall,” Phys. Rev. Lett. 80, 3141 (1998).
R. R. Hartley, and R. P. Behringer, “Logarithmic rate dependence of force networks in sheared granular materials,” Nature (London) 421, 928 (2003).
S. Herminghaus, “Dynamics of wet granular matter,” Adv. Phys. 54, 221 (2005).
K. M. Hill, G. Gioia, and V. V. Tota, “Structure and kinematics in dense free-surface granular flow,” Phys. Rev. Lett. 91, 064302 (2003).
B. P. B. Hoomans, J. A. M. Kuipers, W. J. Briels, W. P. M. Van Swaaij, “Discrete particle simulation of bubble and slug formation in a two dimensional gas-fluidized bed: a hard-sphere approach,” Chem. Eng. Sci. 51, 99 (1996).
M. D. Hogue, C. R. Buhler, C. I. Calle, T. Matsuyama, W. Luo, and E. E. Groop, “Insulator-insulator contact charging and its relationship to atmospheric pressure,” J. Electros. 61, 259 (2004).
D. J. Hornbaker, R. Albert, I. Albert, A. L. Barabasi, and P. Schiffer, “What keeps sandcastles standing,” Nature 387, 765 (1997).
S. R. Hostler, and C. E. Brennen, “Pressure wave propagation in a shaken granular bed,” Phys. Rev. E 72, 031304 (2005).
S. S. Hsiau, and M. L., Hunt, “Kinetic theory analysis of flow-induced particle diffusion and thermal conduction in granular material flows,” Trans. ASME C: J. Heat Transf. 155, 541 (1993).
S. S. Hsiau, and S. J. Pan, “Motion State Transitions in a Vibrated Granular Bed,” Powder Technol. 96, 219 (1998).
S. S. Hsiau, M. H. Wu, and C. H. Chen, “Arching Phenomena in a Vibrated Granular Bed,” Powder Technol. 99, 185 (1998).
S. S. Hsiau, L. S. Lu, and C. H. Tai, “Experimental investigations of granular temperature in vertical vibration beds,” Powder Technol. 182, 202 (2008).
S. S. Hsiau, and Y. H. Shieh, “Fluctuations and self-diffusion of sheared granular material flows,” J. Rheol. 43, 1049 (1999).
S. S. Hsiau, J. Y. Shiu, W. L. Yang, and L. S. Lu, “Influence of internal friction on transport properties in sheared granular flows,” AIChE J. 52, 3592 (2006).
S. S. Hsiau, and W. L. Yang, “Stresses and transport phenomena in sheared granular flows,” Phys. Fluids 14, 612 (2002).
S. S. Hsiau, and W. L. Yang, “Transport property measurements in sheared granular flows,” Chem. Eng. Sci. 60, 187 (2005).
S. S. Hsiau, and H. Y. Yu, “Segregation phenomena in a shaker,” Powder Technol. 93, 83 (1997).
N. Huang, G. Ovarlez, F. Bertrand, S. Rodts, P. Coussot, and D. Bonn, “Flow of wet granular materials,” Phys. Rev. Lett. 94, 028301 (2005).
M. L. Hunt, R. Zenit, C. S. Campbell, and C. E. Brennen, “Revisiting the 1954 suspension experiments of R. A. Bagnold,” J. Fluid Mech. 452, 1 (2002).
B. K. Muite, M. L. Hunt, and G. G. Joseph, “The effects of a counter-current interstitial flow on a discharging hourglass,” Phys. Fluids 16, 3415 (2004).
S. M. Iveson, J. D. Lister, K. Hapgood, and B. J. Ennis, “Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review,” Powder Technol. 117, 3 (2001).
I. I. Inculet, G. S. Petter Castle, and G. Aartsen, “Generation of bipolar electric fields during industrial handling of powders,” Chem. Eng. Sci. 61, 2249 (2006).
E. Iritani, S. Matsumoto, and N. Katagiri, “Formation and consolidation of filter cake in microfiltration of emulsion-slurry,” J. Membr. Sci. 318, 56 (2008).
H. M. Jaeger, and S. R. Nagel, “Physics of the granular state,” Science 255, 1523 (1992).
H. M. Jaeger, S. R. Nagel, and R. P. Behringer, “Granular solids, liquids and gases,” Rev. Mod. Phys. 68, 1259 (1996).
N. Jain, J. M. Ottino, and R. M. Lueptow, “Effect of interstitial fluid on a granular flowing layer,” J. Fluid Mech. 508, 23 (2004).
N. Jain, J. M. Ottino, and R. M. Lueptow, “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granul. Matter, 7, 69 (2005).
N. Jain, D. V. Khakhar, R. M. Lueptow, and J. M. Ottino, “Self-Organization in Granular Slurries,” Phys. Rev. Lett. 86, 3771 (2001).
N. Jain, J. M. Ottino, and R. M. Lueptow, “Combined size and density segregation and mixing in noncircular tumblers,” Phys. Rev. E 71, 051301 (2005).
V. Jasti, and C. F. Higgs, “Experiment study of Granular Flows in a rough annular shear cell,” Phys. Rev. E 78, 041306 (2008).
V. Jasti, and C. F. Higgs, “A fast first order model of a rough annular shear cell using cellular automata,” Granul. Matter, 12, 97 (2010).
J. M. Schleier-Smith and H. A. Stone, “Convection, Heaping, and Cracking in Vertically Vibrated Granular Slurries,” Phys. Rev. Lett. 86, 3016 (2001).
S. Kanazawa, T. Ohkubo, Y. Nomoto, T. Adachi, “Electrification of a pipe wall during powder transport,” J. Electrost. 35, 47 (1995).
M. Klein, L. L. Tsai, M. S. Rosen, T. Pavlin, D. Candela, and R. L. Walsworth, “Interstitial gas and density segregation of vertically vibrated granular media,” Phys. Rev. E 74, 010301 (2006).
S. Klongboonjit and C. S. Campbell, “Convection in deep vertically shaken particle beds. I. General features,” Phys. of Fluids. 20, 103301 (2008).
J. B. Knight, E. E. Ehrichs, V. Y. Kuperman, J. K. Flint, H. M. Jaeger, and S. R. Nagel, “Experimental study of granular convection,” Phys. Rev. E 54, 5726 (1996).
J. B. Knight, H. M. Jaeger, and S. R. Nagel, “Vibration-induced size separation in granular media- the convection connection,” Phys. Rev. Lett. 70, 3728 (1993).
M. M. Kohonen, D. Geromichalos, M. Scheel, C. Schierb, and S. Herminghaus, “On capillary bridges in wet granular materials,” Physica A 339, 7 (2004).
T. S. Komatsu, S. Inagaki, N. Nakagawa, and S. Nasuno, “Creep motion in a granular pile exhibiting steady surface flow,” Phys. Rev. Lett. 86, 1757 (2001).
G. Koval, J. Roux, A. Corfdir, and F. Chevoir, “Annular shear of cohesionless granular materials: From the inertial to quasistatic regime,” Phys. Rev. E 59, 021306 (2009).
C. E. Krauss, M. Horanyi, and S. Robertson, “Experimental evidence for electrostatic discharging of dust near the surface of mars,” New J. Phys. 5, 70.1 (2003).
A. Kudrolli, “Size separation in vibrated granular matter,” Rep. Prog. Phys. 67, 209 (2004).
A. Kudrolli, “Granular matter - sticky sand,” Nat. Mater. 7, 174 (2008).
M. Kwapinska, G. Saage, and E. Tsotsas, 2006, “Mixing of particles in rotary drums: A comparison of discrete element simulations with experimental results and penetration models for thermal processes,” Powder Technol. 161, 69 (2006).
D. J., Lacks, N. Duff, and S. K. Kumar, “Nonequilibrium accumulation of surface species and triboelectric charging in single component particulate systems,” Phys. Rev. Lett. 100, 188305 (2008).
M. Lemieux, F. Bertrand, J. Chaouki, and P. Gosselin, “Comparative study of the mixing of free-flowing particles in a V-blender and a bin-blender,” Chem. Eng. Sci. 62, 1783 (2007).
C. C. Liao, S. S. Hsiau, T. H. Tsai, and C. H. Tai, “Segregation to mixing in wet granular matter under vibration,” Chem. Eng. Sci. 65, 1109 (2010).
C. C. Liao, S. S. Hsiau, and T. Y. Huang, “The effect of vibrating conditions on the electrostatic charge in a vertical vibrating granular bed,” Powder Technol. will be published.
E. W. C. Lim, “Density Segregation in Vibrated Granular Beds with Bumpy Surfaces,” AICHE J. 56, 2588 (2010).
L. S. Lu, and S. S. Hsiau, “Mixing in vibrated granular beds with the effect of electrostatic force,” Powder Technol. 160, 170 (2005).
S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J. Duran, “Onset of Convection in Molecular Dynamics Simulations of Grains,” Phys. Rev. E 50, 1762 (1994).
Z. Mahmood, S. Dhakal, K. Iwashita, “Measurement of Particle Dynamics in Rapid Granular Shear Flows, J. Eng. Mech.-ASCE, 135, 285 (2009).
M. Majid, and P. Walzel, “Convection and segregation in vertically vibrated granular beds,” Powder Technol. 192, 311 (2009).
T. Matsusyama, and H. Yamamoto, “Impact charging of particulate materials,” Chem. Eng. Sci. 61, 2230 (2006).
T. Matsusyama, and H. Yamamoto, “Charge relaxation process dominates contact charging of a particle in atmospheric conditions,” J. Phys. D-Appl. Phys. 28, 2418 (1995a).
T. Matsusyama, and H. Yamamoto, “Charge relaxation process dominates contact charging of a particle in atmospheric conditions II. General model,” J. Phys. D-Appl. Phys. 30, 2170 (1996).
J. J. McCarthy, “Turning the corner in segregation. Powder Technol. 192, 137 (2009).
P. Mehrani, H. T. Bi, and J. R. Grace, “Electrostatic charge generation in gas-solid fluidized beds,” J. Electros. 63, 165 (2005).
J. Mellmann, “The transverse motion of solids in rotating cylinders—forms of motion and transition behavior,” Powder Technol. 118, 251 (2001).
S. W. Meier, R. M. Lueptow, and J. M. Ottino, “A dynamical systems approach to mixing and segregation of granular materials in tumblers,” Adv. Phys. 56, 757 (2007).
T. Mikami, H. Kamiya, and M. Horio, “Numerical simulation of cohesive powder behavior in a fluidized bed,” Chem. Eng. Sci. 53, 1927 (1998).
R. J. Milburn, M. A. Naylor, A. J. Smith, M. C. Leaper, K. Good, Michael R. Swift, and P. J. King, “Faraday tilting of water-immersed granular beds,” Phys. Rev. E 71, 011308 (2005).
S. T. Nase, W. L. Vargas, A. A. Abatan, and J. J. McCarthy, “Discrete characterization tools for cohesive granular material,” Powder Technol. 116, 214 (2001).
W. K. Ng, and R. B. H. Tan, “Case study: optimization of an industrial fluidized bed drying process for large Geldart Type D nylon particles,” Powder Technol. 180, 289 (2008).
S. Nieh, and T. Nguyen, “Effects of humidity, conveying velocity, and particle size on electrostatic charges of glass beads in a gaseous suspension flow,” J. Electros. 21, 99 (1988).
M. Nifuku, and H. Katoh, “A study on the static electrification of powders during pneumatic transportation and the ignition of dust cloud,” Powder Technol. 135, 234 (2003).
T. Nomura, T. Satoh, and H. Masuda, “The environment humidity effect on the tribo-charge of powder,” Powder Technol. 135–136, 43 (2003).
S. Ogawa, “Multi-temperature theory of granular materials, Proceedings of US–Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials,” Tokyo, 208, (1978).
J. M. Ottino, and D. V. Khakhar, “Scaling of granular flow processes: From surface flows to design rules,” AIChE J. 48, 2157 (2002).
J. M. Ottino, and R. M. Lueptow, “Materials science - On mixing and demixing,” Science 319, 912 (2008).
J. M. Ottino, and D. V. Khakhar, “Mixing and segregation of granular materials,” Annu. Rev. Fluid Mech. 32, 55 (2000).
H. Pak, and R. Behringer, “Surface Waves in Vertically Vibrated Granular Materials,” Phys. Rev. Lett. 71, 1832 (1993).
A. H. A. Park, and L. S. Fan, “Electrostatic charging phenomenon in gas-liquid-solid flow systems,” Chem. Eng. Sci. 62, 371 (2007).
O. Pitois, P. Moucheront, and X. Chateau, “Liquid bridge between two moving spheres: An experimental study of viscosity effects,” J. Colloid Interface Sci. 231, 26 (2000).
O. Pitois, P. Moucheront, and X. Chateau, “Rupture energy of a pendular liquid bridge,” Eur. Phys. J. B 23, 79 (2001).
A. V. Potapov, M. L. Hunt, and C. S. Campbell, “Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method,” Powder Technol. 116, 204 (2001).
D. V. N. Prasad and D. V. Khakhar, “Mixing of granular material in rotating cylinders with noncircular cross-sections,” Phys. Fluids 22, 103302 (2010).
Y. Pu, M. Mazumder, and C. Cooney, “Effects of electrostatic charging on pharmaceutical powder blending homogeneity,” J. Pharm. Sci. 98, 2412 (2009).
K. A. Reddy, and V. Kumaran, “Structure and dynamics of two-dimensional sheared granular flows,” Phys. Rev. E 79, 061301 (2009).
E. Riedo, F. Levy, and H. Brune, “Kinetics of capillary condensation in nanoscopic sliding friction,” Phys. Rev. Lett. 88, 185505 (2002).
G. H. Ristow, “Particle mass segregation in a 2-dimensional rotating drum,” Europhys Lett. 28, 97 (1994).
G. H. Ristow, “Pattern Formation in Granular Materials Springer,” Berlin, (2000).
H. E. Rose, and T. Tanaka, “Rate of discharge of granular materials from bins and hoppers,” The Engr 208, 465 (1959).
A. Rosato, K.J. Strandburg, F. Prinz, and R.H. Swendsen, “Why the Brazil nuts are on top: size segregation of particulate matter by shaking,” Phys. Rev. Lett. 58, 1038 (1987).
G. Rowley, “Quantifying electrostatic interactions in pharmaceutical solid systems,” Int. J. Pharm. 227, 47 (2001).
A. Samadani, and A. Kudrolli, “Segregation transitions in wet granular matter,” Phys. Rev. Lett. 85, 5102 (2000).
A. Samadani, and A. Kudrolli, “Angle of repose and segregation in cohesive granular matter,” Phys. Rev. E 64, 051301 (2001).
L. Sanfratello, and E. Fukushima, “Experimental studies of density segregation in the 3D rotating cylinder and the absence of banding,” Granul. Matter 11, 73 (2009).
S. B. Savage, and R. Dai, “Studies of granular shear flows: Wall slip velocities, ‘layering’ and self-diffusion,” Mech. Mat. 16, 225 (1993).
A. Sarkar, and C. Wassgren, “Continuous blending of granular material,” Chem. Eng. Sci. 65, 5687 (2010).
P. Schall P, and M. van Hecke, “Shear bands in matter with granularity, Annu. Rev. Fluid Mech. 42, 67 (2010).
M. Schulz, B.M. Schulz, and S. Herminghaus, “Shear-induced solid-fluid transition in a wet granular medium,” Phys. Rev. E 67, 052301 (2003).
J. M. Schleier-Smith, and H. A. Stone, “Convection, heaping, and cracking in vertically vibrated granular slurries,” Phys. Rev. Lett. 86, 3016 (2001).
D. Shi, A. A. Abatan, W. L. Vargas, and J. J. McCarthy, “Eliminating Segregation in Free-Surface Flows of Particles,” Phys. Rev. Lett. 99, 148001 (2007).
Q. Shi, G. Sun, M. Hou, and K. Lu, “Density-driven segregation in vertically vibrated binary granular mixtures,” Phys. Rev. E 75, 061302 (2007).
C. Shook, and M. Roco, “Slurry Flow,” Butterworth-Heinemann, Boston (1991).
M. D. Sinnott, and P. W. Cleary, “Vibration-induced arching in a deep granular bed,” Granul. Matter 11, 345 (2009).
E. J. De Souza, L. Gao, T. J. McCarthy, E. Artz, and A. J. Crosby, “Effect of contact angle hysteresis on the measurement of capillary forces,” Langmuir 24, 1391 (2008).
E. C. Spiker, and P. L. Gori, “National Landslide Hazards Mitigation Strategy – A Framework for Loss eduction,” U.S. Dept. of the Interior, Reston, Virginia, (2003).
Y. H. Taguchi, “New Origin of Convective Motion: Elastically Induced Convection in Granular Materials,” Phys. Rev. Lett. 69, 1367 (1992).
P. Tegzes, T. Vicsek, and P. Schiffer, “Avalanche dynamics in wet granular materials,” Phys. Rev. Lett. 89, 094301 (2002).
J. Tsamopoulos, T. Chen, and A. Borkar, “Viscous oscillations of capillary bridges,” J. Fluid Mech. 235, 579 (1992).
Y. Tsuji, T. Kawaguchi, and T. Tanaka, “Discrete particle simulation of twodimensional fluidized bed,” Powder Technol. 77, 79 (1993).
S. Ulrich, M. Schröter, and H. L. Swinney, “Influence of friction on granular segregation,” Phys. Rev. E 76, 042301 (2007).
B. Utter, and R. P. Behringer, “Self-diffusion in dense granular shear flows,” Phys. Rev. E 69, 031308 (2004).
W. L. Vargas, S. K. Hajra, D. Shi, and J. J. McCarthy, “Suppressing the segregation of granular mixtures in rotating tumblers,” AIChE J. 54, 3124 (2008).
J. Vernon, W. Hugen, and A. Trujillo, “Pharmaceutical manufacturing efficiency, drug process and public health: examining the casual links,” Drug Inf. J. (2007).
O. R. Walton, and R. L. Braun, “Stress calculations for assemblies of elastic sphere in uniform shear,” Acta Mech. 63, 73 (1986).
P. Wang, C. Somg, C. Briscoe, and H. A. Makse, “Particle dynamics and effective temperature of jammed granular matter in a slowly sheared three-dimensional Couette cell,” Phys. Rev. E 77, 061309 (2008).
H. G. Wang, W. Q. Yang, P. Senior, R. S. Raghavan, and S. R. Duncan, “Investigation of batch fluidized-bed drying by mathematical modeling, CFD simulation and ECT measurement,” AICHE J. 54, 427 (2008).
G. R. Woodle, and J. M. Munro, “Particle motion and mixing in a rotary kiln,” Powder Technol. 76, 241 (1993).
X. Wu, K. J. Måløy, A. Hansen, M. Ammi, and D. Bideau, “Why hour glasses tick,” Phys. Rev. Lett. 71, 1363 (1993).
Q. Xu, A. V. Orpe, and A. Kudrolli, “Lubrication effects on the flow of wet granular materials,” Phys. Rev. E 76, 031302 (2007).
W. L. Yang, and S. S. Hsiau, “Wet granular materials in sheared flows,” Chem. Eng. Sci. 60, 4265 (2005).
W. L. Yang, and S. S. Hsiau, “The effect of liquid viscosity on sheared granular flows,” Chem. Eng. Sci. 61, 6085 (2006).
J. Yao, and C. H. Wang, “Granular size and shape effect on electrostatics in pneumatic conveying systems,” Chem. Eng. Sci. 61, 3858 (2006).
K. W. Zhu, S. M. Rao, Q. H. Huang, C. H. Wang, S. Matsusaka, and H. Masuda, “On the electrostatics of pneumatic conveying of granular materials using electrical capacitance tomography,” Chem. Eng. Sci. 59, 3201 (2004).
K. Zhu, R. B. H. Tan, F. Chen, K. H. Ong, and P. W. S. Heng, “Influence of particle wall adhension on particle electrification in mixers,” Int. J. Pharm. 328, 22 (2007).
O. Zik, and J. Stavans, “Self-diffusion in granular flows,” Europhys. Lett. 16, 255 (1991).
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2010-12-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明