參考文獻 |
[1] 王寶貫,雲物理學,渤海堂,台北市,民國八十六年一月。
[2] Bringi, V. N.,V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regime from disdrometer and dual-polarized radar analysis. J. Atmos. Sic., 60, 354-365.
[3] Brown, P. R. A. and Swann, H.A., “Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data”, Q. J. R. Meteorol. Soc., Vol.123, pp.2245-2275, October 1997.
[4] Bull.Amer. Meteor. Soc., Vol.88, pp.1723-1727, November 2007. Platt, C. M. R., “A parameterization of the visible extinction coefficient in terms of the ice/water content”, J. Atmos. Sci., Vol.54, pp.2083-2098,August 1997.
[4] Chen, J.‐P., and D. Lamb, 1994: Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part I: Description of the Microphysical Model. J. Atmos. Sci., 51, 2613‐2630.
[5] Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.
[6] Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part _: Description. J. Atmos. Sci., 51, 249-280.
[7] Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parameterization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 1997–2017.
[8] Gamache, J. F., and R. A. Houze, 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118-135.
[9] Haynes, J. M., “QuickBeam radar simulation software user’s guide”,Colorado State University, October 2007.
[10] Haynes, J. M., R. T. Marchand, Z. Luo, A. Bodas-Salcedo, and G. L. Stephens, “A multipurpose radar simulation package: QuickBeam”
[11] Hirohiko Masunaga, “Satellite Data Simulator Unit (SDSU) ver.2 User’s Guide”,Nagoya University, May 2010
[12] Houze, R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979:Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156–162.
[13] Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface features to the precipitation and air flow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 1444-1472.
[12] Lin, Y. L., R.D. Farley, and H.D. Orville, “Bulk parameterization of the snow field in a cloud model”, J. APPL. Meteor., Vol. 22, pp.1965-1902, February 1983.
[13] Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: Attempt of classification. J. Atmos. Sci., 65, 1721-1748.
[14] Kong, F., and M. K. Yau, 1997: An explicit approach to microphysics in MC2. Atmos.–Ocean, 35, 257–291.
[15] Lin, Y. L., R.D. Farley, and H.D. Orville, “Bulk parameterization of the snow field in a cloud model”, J. APPL. Meteor., Vol. 22, pp.1965-1902, February 1983.
[16] Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Atmos. Sci., 5, 165‐166.
[17] Morrison, H., and J. O. Pinto, 2006: Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds. Mon. Wea. Rev., 134, 1880–1900.
[18] Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud. J. Meteor. Soc. Japan, 68, 107-128.
[19] Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107.
[20] Solomon, A., H. Morrison, O. Persson, M. D. Shupe, J.-W. Bao, 2009: Investigation of microphysical parameterizations of snow and ice in arctic clouds during M-PACE through model–observation comparisons. Mon. Wea. Rev., 137, 3110-3128.
[21] Thompson, G., R.M. Rasmussen, and K. Manning, “Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis”, Mon. Wea. Rev., Vol.132, pp.519-542, February 2004.
[22] Thompson, G., R. M. Rasmussen, and K. Manning, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.
[23] Tokay A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355-371.
[24] Ulbrich, C. W., 1983: Natural Variations in the Analytical Form of the Raindrop Size Distribution. J. Appl. Meteor., 22, 1764‐1775.
[25] Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995:New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 29–62.
[26] Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 1067-1078.
[26] Wang, C., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration. Part I: Dynamics and microphysics, J. Geophys. Res., 110, D21211, doi:10.1029/2004JD005720.
|