摘要(英) |
The copper nanoparticles were fabricated by the thermal evaporation method, heated to form cupric oxide nanoparticles. The chemical composition of the samples are pure Cu and CuO0.94 by X-ray diffraction and General Structure Analysis System. The mean particle diameter of Cu and CuO nanoparticles are 28.69 nm and 4.2 nm respectively determined using X-ray diffraction patterns.
Magnetic properties were measured by Physical Property Measurement System. The M-H curve of Cu and CuO0.94 nanoparticles can be characterized by a Langevin function, a Brillouin function plus a diamagnetic term. The M-H curves of two samples can be elucidated by the spin polarization in the low applied magnetic field, but the magnetization in the high field is predominated by diamagnetic term with temperature increment. The magnetic moment of Cu and CuO0.94 nanoparticles can be explained by thermal-induced effect at low temperature. The saturated magnetization of the copper nanoparticles can be described by the spin-wave excitation model, but the Cupric oxide can’t. The M-T curves of two samples are dominated by Langevin function at low temperature. The magnetization of Cu nanoparticles has a small peak value occurrence nearby 55K, and spin-wave contribution is not obvious at high temperature. The magnetization of CuO0.94 nanoparticles increases gradually with temperature nearby 135K.
|
參考文獻 |
第一章
[1] 銅氧核殼奈米顆粒間交互作用對自旋極化之影響,陳乃維,國立中央大學碩士論文(2008)
[2] 核殼結構的奈米Cu/Cu2O 微粒之自旋極化與弱鐵磁現象,傅喬玟,國立中央大學碩士論文(2007)
[3] 奈米氧化亞銅微粒的氧化缺陷及自旋極化,林裕翔,國立中央大學碩士論文(2007)
[4] 銅氧核殼奈米顆粒的雙分量自旋極化,李宗儒,國立中央大學碩士論文(2008)
第二章
[1] 材料分析,汪建民,中國材料學學會(2008)
[2] X光繞射原理與材料結構分析 許樹恩,吳泰伯 中國材料科學學會(2006) [3] 擬合X光繞射峰形判定奈米微粒粉末的粒徑分布,王進威,國立中央大學碩士論文(2006)
第三章
[1] G. M. Pastor, J. Dorantes-Davila, and K. A. Bennemann, Phys. Rev. B 40, 7642 (1989)
[2] J. Jing, X. Yang, Y. Hsia, and U. Gonser, Surf. Sci. 233, 351 (1990)
[3] Jung Hyeun Kim , Sheryl H. Ehrman Published in Applied Physics Letters 84 (8), 1278–1280 (2004)
[4] V. Sahni, and K.-P. Bohnen, Phys. Rev. B 29, 1045 (1984)
[5] Manoj K. Harbola, and Viraht Sahni, Phys. Rev. B .37, 745 (1988)
[6] V. Sahni, and K.-P. Bohnen, Phys. Rev. B 31, 7651 (1985)
[7] 磁性物理學,近角聰信,張煦、李學養 合譯 (1981)
[8] 顆粒間交互作用對奈米金自發磁性之影響,郭彥廷 國立中央大學碩士論文(2008)
[9] Introduction to Solid State Physics 8/e, Charles Kittel
[10] R. Caudillo, X. Gao, R. Escudero, M. Jose-Yacaman, and J. B. Goodenough, PRB 74,214418 (2006)
[11] 吳勝允、李文獻 物理雙月刊 二十八卷五期 (2006)
[12] Steen Morup and Cathrine Frandsen, Phys. Rev. Lett 92, 217201 (2004)
[13] S.Morup and B.R.Hansen, Physical Review B 72, 024418 (2005)
第四章
[1] A. Punnoose, H. Magnone, M. S. Seehra and J. Bonevich, Physical Review B 64, 174420 (2001)
|