博碩士論文 985202070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:18.223.209.129
姓名 伍星翰(Xing-han Wu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 線性加速度感測器的研究與其應用
(The Study of G-Sensor-based Systems and their Applications)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 基於檢驗數值的糖尿病腎病變預測模型
★ 模糊類神經網路為架構之遙測影像分類器設計★ 複合式群聚演算法
★ 身心障礙者輔具之研製★ 指紋分類器之研究
★ 背光影像補償及色彩減量之研究★ 類神經網路於營利事業所得稅選案之應用
★ 一個新的線上學習系統及其於稅務選案上之應用★ 人眼追蹤系統及其於人機介面之應用
★ 結合群體智慧與自我組織映射圖的資料視覺化研究★ 追瞳系統之研發於身障者之人機介面應用
★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用★ 基因演算法於語音聲紋解攪拌之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文設計了兩種有關於線性加速度感測器的應用─「跌倒偵測系統」和「手勢移動軌跡辨識系統」。近年來,已經有許多跌倒偵測的相關研究進行中,各有優缺點和限制。本論文目標之ㄧ是利用線性加速度感測器能偵測三軸方向加速度的特性,來辨別跌倒的方向,並結合ZigBee定位系統,讓跌倒意外的發生地點可以被快速地找到,以便做最迅速的救援。爲了提高容錯的可能性以及減少日常動作的誤判,本論文利用模糊系統來實現跌倒偵測系統,目前此系統已可分辨出前、後、左、右四種方向的跌倒,整體的辨識率為九成五。此外,我們已將此模糊系統實現在硬體的單晶片上,以增加其實用性。本論文提出的第二種應用是手勢移動軌跡的辨識系統,利用加速度感測器記錄手部移動軌跡的加速度值,透過無線方式傳至電腦,再藉由動態時間校正(dynamic time warping, DTW)演算法來辨識移動軌跡,目前可分辨六種基本手部移動軌跡,其整體辨識率可達到九成二。此外,本論文利用所發展的手勢移動軌跡的辨識系統來控制自走車之行進,有不錯之效果。
摘要(英) This thesis presents two accelerometer-based applications: a fall detection system and a gesture recognition system. Recently, there are several approaches to fall detection. Each approach has its own advantages, disadvantages, and limitations. The first objective of this thesis is not only to detect falls but also to identify the directions of falls based on a a tri-axis accelerometer. The proposed fall detection system incorporated with a ZigBee-based location system can quickly locate the position where a fall happens such that a quick and effective response can be issued. In order to increase the error tolerance and decrease the miss-classification of the activities of daily living, the fall detection system adopts a fuzzy system to implement the decision core module of the fall detection system. For the time being, the fall detection system can identify four directions and the correct recognition rate was about 95%. In addition, we have already implemented the fall detection system in a microprocessor to increase its applicability. The second objective of the thesis is to develop a hand gesture recognition system. An accelerometer is adopted to record a user’s hand trajectories. The trajectory data is transmitted wirelessly via an RF module to a computer. Then the dynamic time warping (DTW) algorithm is adopted to classify six different hand trajectories. Simulation results show that the recognition rate could achieve 92.2% correct. Finally, the proposed hand gesture recognition system was adopted for navigating a car-robot.
關鍵字(中) ★ 移動軌跡辨識系統
★ 模糊系統
★ 跌倒偵測系統
關鍵字(英) ★ fuzzy system
★ fall detection system
★ hand gesture recognition system
論文目次 中文摘要 I
ABSTRACT II
誌   謝 III
目 錄 IV
圖目錄 List of Figures VI
表目錄 List of Tables IX
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 論文架構 3
第二章、相關研究 4
2-1 線性加速度感測器各種應用 4
2-2 跌倒偵測判斷方式 5
2-3 移動軌跡判斷方式 12
第三章、 系統硬體介紹 14
3-1 線性加速度感測器介紹 14
3-2 跌倒偵測系統架構 17
3-2-1 加速度感測器模組 18
3-2-2 ZigBee參考節點端 22
3-2-3 ZigBee定位伺服器接收端 24
3-3 移動軌跡辨識系統架構 26
3-3-1 加速度感測器模組 27
3-3-2 RF電腦接收端 28
3-3-3 自走車 29
3-4 Z-Stack™無線定位系統 30
3-4-1 接收信號強度指示(RSSI) 31
第四章、研究方法與步驟 34
4-1 跌倒偵測系統 34
4-1-1 訊號前處理 36
4-1-2 模糊判斷系統 39
4-1-3 計算傾斜角度 47
4-1-4 累計時間計算 49
4-2 移動軌跡辨識系統 50
4-2-1 校正 51
4-2-2 偵測動作起始點與結束點 54
4-2-3 訊號前處理 55
4-2-4 辨識分類 56
4-2-5 控制 58
第五章、實驗結果 59
5-1 跌倒偵測系統 59
5-1-1 模糊系統演算法測試 59
5-1-2 Z-Stack™ 定位測試 64
5-2 移動軌跡辨識系統 67
5-2-1 移動軌跡辨識 67
5-2-2 實際控制測試 70
第六章、結論與未來展望 72
參考文獻 74
參考文獻 [1] Apple Inc. [Online] Available:
http://www.apple.com/tw/iphone/specs.html December 5,2010[data accessed].
[2] H. Luukinen, M. Herala, K. Koski, R. Honkanen, P. Lappala and S.-L Kivela, “Fracture risk associated with a fall according to type of fall among the elderly,” Osteoporos int,vol. 11, pp. 631-634, 2000.
[3] S. L. Greenspan, E. R. Myers, L. A. Maitland, N. M. Resnick, and W. C. Hayes, “Fall Severity and Bone Mineral Density as Risk Factors for Hip Fracture in Ambulatory Elderly,” The Journal of the American Medical Association, vol. 271, pp. 128-133, 1994. 
[4] M. Palvanen, P. Kannus, J. Parkkari, T. Pitkäja‥rvi, M. Pasanen, I. Vuori and M. Järvinen. “The injury mechanisms of osteoporotic upper extremity fractures among older adults: A controlled study of 287 consecutive patients and their 108 controls,” Osteoporos int, vol. 11, pp. 822-831, 2000.
[5] 梁偉成、紀煥庭、胡名霞、林茂榮,「社區老人跌倒機轉與傷害嚴重度」, Formosan Journal of Physical Therapy, vol. 30, pp. 105-115, 2005.
[6] N. Noury, A. Fleury, P. Rumeau, A. K. Bourke, G. Ó Laighin, V. Rialle and J. E. Lundy, “Fall detection – Principles and Methods,” in 29th Annual International Conference of the IEEE-EMBS, 2007, pp. 1663–1666.
[7] Nintendo Phuten Co..[Online] Available:
http://www.nintendo.tw/wii_index.htm December 5, 2010 [data accessed].
[8] M. C. Su, G. D. Chen, Y. S. Tsai, R. H. Yao, C. K. Chou, Y. B. Jinawi, D. Y. Huang, Y. Z. Hsieh, and S. C. Lin, “Design of an Interactive Table for Mixed-Reality Learning Environments,” in 4th International Conf. on E-Learning and Games, Edutainment 2009, Banff, Canada, Aug. 9-11, pp. 489-494.
[9] A. Kun and W. T. Miller, “Adaptive dynamic balance of abiped robot using neural networks,” in IEEE Conference on Robotics and Automation, 1996, pp. 240-245.
[10] T. Nagasaki, S. Kajita, K. Kaneko, K. Yakoi, and K. Tanie, “A running experiment of humanoid biped,” in Proc. of IROS2004, 2004, pp. 136–141.
[11] C. C. Wong, C. T. Cheng, K. H. Huang, Y. T. Yang, H. M. Chan, H. C. Chen, Y. Y. Hu, and C. S. Yin, “Static balancing control of humanoid robot based on accelerometer,” in SICE Annual Conference 2008, pp. 2836-2840.
[12] A. M. Khan, Y. K. Lee, S. Y. Lee, and T. S. Kim, “A Triaxial Accelerometer-Based Physical-Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer,” IEEE Trans. of Ingormation Technology in Biomedicine, vol. 14, pp. 1166-1172, 2010.
[13] X. Yu, “Approach and principles of fall detection for elderly and patient,“ in 10th IEEE Int. Conf. on e-health Networking, Applications and Services, 2008, Singapore, pp. 42-47.
[14] A. Y. Jeon, I. C. Kim, J. H. Jung, S. Y. Ye, J. H. Kim, K. G. Nam, S. W. Baik, J. H. Ro, and G. R. Jeon, “Implementation of the Personal Emergency Response System using a 3-axial Accelerometer,” in information Technology Application in Biomedicine, 2007. ITAB 2007. 6th International Special Topic Conference, 2009, pp. 223-226.
[15] M. Kangas, A. Konttia, P. Lindgren, I. Winblad, T. Jamsa, “Comparison of low-complexity fall detection algorithms for body attached accelerometers,” Gait & Posture, vol. 28 , pp. 285-291, 2008.
[16] A. K. Bourke, J. V. O’Brien, G. M. Lyons, “Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm,” Gait & Posture, vol. 26, pp. 194-199, 2007.
[17] U. Lindemann, A. Hock, M. Stuber, W. Keck, C. Becker, “Evaluation of a fall detector based on accelerometers: a pilot study,” Biol. Eng Comput Med, vol. 43, pp. 548-551, 2005.
[18] D. Karantonis, M. Narayanan, M. Mathie, N. Lovell, and B. Celler, “Implementation
Of a real-time human movement classifier using a Triaxial accelerometer for ambulatory monitoring,” IEEE Trans. Inf. Technol. Biomed., vol. 10, pp. 156–167, 2006.
[19] E. Choi , W. Bang , S. Cho, J. Yang, D. Kim, and S. Kim, “Beatbox music phone: gesture-based interactive mobile phone using a triaxisaccelerometer,” in IEEE international conference on industrialtechnology, 2005, pp. 97–102.
[20] C. Zhu and W. Sheng, “Online Hand Gesture Recognition Using Neural Network Based Segmentation,” in IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2009.
[21] G. Nieze and G.P. Hancke, “Gesture recognition as ubiquitous input for mobile phones,” in International Workshop on Devices that Alter Perception, 2008.
[22] Z. Shiqi, Y. Chun and Z. Yan, “Handwritten character recognition using orientation quantization based on 3D accelerometer,” in the 5th Annual International Conference on Mobile and Ubiquitous Systems, 2008.
[23] J. Lee and I. Ha, “Real-Time Motion Capture for a Human Body using Accelerometers,” Robotica, vol. 19, pp. 601-610, 2001.
[24] 施建仲,「使用線性加速感測晶片的計步器」,國立中央大學資訊工程研究所碩士論文,民國九十九年。
[25] A. Sixsmith, N. Johnson, and R. Whatmore, “Pyroelectric IR sensor array for fall detection in the older population,” J. Phys. IV France, vol. 128, pp. 153–160, 2005.
[26] Y. Zigel, D. Litvak and I. Gannot, “A Method for Automatic Fall Detection of Elderly People Using Floor Vibrations and Sound—Proof of Concept on Human Mimicking Doll Falls,” IEEE Trans. on Biomedical Engineering, vol. 56, 2009.
[27] G. Diraco, A. Leone, and P. Siciliano, “An Active Vision System for Fall Detection and Posture Recognition in Elderly Healthcare,” in Design, Automation & Test in Europe Conference & Exhibition, 2010.
[28] J. Tao, M. Turjo, M. Wong, M. Wang, and Y. Tan, “Fall Incidents Detection for Intelligent Video Surveillance,” in Information, Communications and Signal Processing, 2005 Fifth International Conference on, 2005, pp.1590-1594.
[29] Centre Suisse d'Electronique et Microtechnique SA [Online] Available:
http://www.csem.ch/site/ December 5, 2010 [data accessed].
[30] Tunstall Available:
http://www.tunstall.co.uk/products.aspx?PageID=152 December 5, 2010 [data accessed].
[31] プロップ Co.. [Online] Available:
http://www.prop-g.co.jp/kikorigi.html December 5, 2010 [data accessed].
[32] M. Singh, M. Mandal and A. Basu, “Visual Gesture Recognition for Ground Air Traffic Control using the Radon Transform,” in IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2005.
[33] K. K. Kim, K. C. Kwak, and S. Y. Ch, “Gesture Analysis for Human-Robot
Interaction,” in Proc. of the 8th Int. Conf. on Advanced Communication Technology, 2006, pp. 1824–1827.
[34] 孟維國,「三軸加速度計ADXL330的特點及其應用」,蘇州大學電子信息學院,2007.
[35] Analog Device Inc.. [Online] Available:
http://www.analog.com/static/imported-files/data_sheets/ADXL330.pdf December 5, 2010 [data accessed].
[36] 華亨科技[Online] Available:
http://www.hhnet.com.tw/home.php December 5, 2010 [data accessed].
[37] Texas Instruments Inc.. [Online] Available: http://focus.ti.com/docs/toolsw/folders/print/cc2431dk.html
December 5, 2010 [data accessed].
[38] Texas Instruments Inc.. [Online] Available:
http://focus.ti.com/docs/prod/folders/print/cc2430.html December 5, 2010 [data accessed]
[39] Texas Instruments Inc.. [Online] Available:
http://focus.ti.com/docs/toolsw/folders/print/z-stack.html?DCMP=HPA_RFIC_General&HQS=Other+OT+z-stack December 5, 2010 [data accessed]
[40] 華亨科技[Online] Available:
http://www.ie.ksu.edu.tw/data/zigbee/%E6%89%8B%E5%86%8A/Z-Stack%E5%AE%9A%E4%BD%8D%E9%96%8B%E7%99%BC%E6%8C%87%E5%8D%97.pdf
December 5, 2010 [data accessed]
[41] R. M. Rangayyan, Biomedical signal analysis: A Case-Study Approach, Wiley-IEEE Press, December 2001, pp.99-100.
[42] 熊昭岳,「行車安全偵測系統」,國立中央大學資訊工程研究所碩士論文,民國九十四年。
[43] 吳燿全,「人體姿勢重建與動作辨識的研究」,國立清華大學資訊工程學系碩士論文,民國九十四年。
[44] X. H. Wu, M. C. Su, and P. C. Wang, “A Hand-Gesture-Based Control Interface for
a Car-Robot,” in IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2010.
指導教授 蘇木春(Mu-Chun Su) 審核日期 2011-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明