博碩士論文 93542021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.149.233.32
姓名 陳映濃(Ying-Nong Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用最短特徵空間轉換法於人臉辨識
(Face Recognition Using Nearest Feature Space Embedding)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人臉辨識演算法通常必須克服一些問題,如角度、光線以及表情變化。為了降低這些問題的影響,已經有許多學者不斷地研究如何在特徵空間中尋找最佳的線性或非線性區別轉換方式以達到較佳的辨識結果。在本研究中,我們提出了一種基於最近特徵空間轉換法的人臉辨識演算法。這種方法是將一個資料點與其最鄰近的資料所構成的直線或是空間,將這一段距離嵌入到區別分析中。透過這樣的方式,可以將類別資訊、區域結構拓樸保留以及最近特徵空間測量這三個因子嵌入到最佳化的區別分析中。在實驗結果中,我們的演算法與其它著名演算法在比較後都有較佳的辨識結果。
摘要(英) Face recognition algorithms often have to solve problems such as facial pose, illumination, and expression (PIE). To reduce these impacts, many researchers have been trying to find the best discriminant transformation in feature spaces, either linear or nonlinear, to obtain better recognition. Various researchers have also designed novel matching algorithms to reduce the PIE effects. In this study, a nearest feature space embedding (called NFS embedding) algorithm is proposed for face recognition. The distance between a point and the nearest feature line (NFL) or an NFS is embedded in the transformation in the discriminant analysis. Three factors, namely class separability, neighborhood structure preservation, and NFS measurement, were considered to find the most effective and discriminating transformation in eigenspaces. The proposed method was evaluated using several benchmark databases and compared with several state-of-the-art algorithms. According to the compared results, the proposed method outperformed the other algorithms.
關鍵字(中) ★ 人臉辨識
★ 區域資訊
關鍵字(英) ★ laplacian
★ face recognition
★ manifold
論文目次 摘要 V
Abstract VII
誌謝 VII
Chapter 1:Introduction 1
1.1 Motivation 1
1.2 Organization of the Dissertation 1
Chapter 2:Review of Related Works 3
2.1 Previous Methods for Face Recognition 3
2.2 A Review of Eigenspace Approach 9
2.2.1 Linear Discriminant Analysis(LDA)………….…………………...11
2.2.2 Local Structure Preserving Algorithm…..…….…………………...12
2.2.3 Optimization of the Fisher Criterion…..…….………………..…...14
2.2.4 Discriminative Common Vectors(DCV)…..…...……………..…...16
2.2.5 Two-dimensional Principal Component Analysis……...……..…...16
Chapter 3:Face Recognition Using Nearest Feature Space Embedding 18
3.1 Nearest Feature Space Embedding(NFS) 18
3.1.1 Nearest Feature Space (NFS) Strategy 21
3.1.2 Scatter Computation of the Nearest Feature Space 22
3.2.3 Maximization of the Fisher criterion 28
3.2 Two-dimensional NFS Embedding(2DNFS) 31
Chapter 4:Experimental Results 34
4.1 Evaluation of Nearest Feature Space Embedding 34
4.2 Evaluation of 2DNFS Embedding 55
Chapter 5:Conclusions and Future Works 57
5.1 Conclusions 57
5.2 Future Works 57
References 58
參考文獻 [1] X. He, S. Yan, Y. Ho, P. Niyogi and H. J. Zhang, “ Face recognition using Laplacianfaces,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 328-340, 2005.
[2] M. Turk and A.P. Pentland, “Face recognition using eigenfaces,” IEEE Conf. Computer Vision and Pattern Recognition, 1991.
[3] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, July 1997.
[4] D. Cai, X. He, J. Han, and H. Zhang, “Orthogonal Laplacianfaces for face recognition,” IEEE Transactions on Image Processing, vol. 15, no. 11, pp. 3608-3614, 2006.
[5] J. Tenenbaum, V. Silva, and J. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science, vol. 290, no. 22, pp. 2319-2323, Dec. 2000.
[6] H. Zha and Z. Zhang, “Isometric embedding and continuum ISOMAP,” Proc. 20th Int’l Conf. Machine Learning, pp. 864-871, 2003.
[7] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, no. 22, pp. 2323- 2326, Dec. 2000. Dec. 2000
[8] L.K. Saul and S.T. Roweis, “Think globally, fit locally: Unsupervised learning of low dimensional manifolds,” J. Machine Learning Research, vol. 4, pp. 119-155, 2003.
[9] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and clustering,” Advances in Neural Information Processing System, vol. 14, pp. 585-591, 2001.
[10] J. Yang, D. Zhang, J. Y. Yang, and B. Niu, “Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 650-664. 2007.
[11] T. Zhang, B. Fang, Y. Tang, G. He, and J. Wen, “Topology preserving non-negative matrix factorization for face recognition,” IEEE Transactions on Image Processing, vol. 17, no. 4, pp. 574-584, 2008.
[12] R. Lotlikar and R. Kothari, “Fractional-step dimensionality reduction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 623–627, 2000.
[13] J. Yang, D. Zhang, A. Frangi, and J. Yang, “Two-dimensional PCA: A new approach to appearance-based face representation and recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, pp. 131–137, 2005.
[14] K. Etemad and R. Chellappa, “Discriminant analysis for recognition of human face recognition,” Journal of Optical Society America, vol. 14, pp. 1724 - 1733, August 1997.
[15] J. Fortuna and D. Capson, “Improved support vector classification using PCA and ICA feature space modification,” Pattern Recognition, vol. 37, pp. 1117–1129, 2004.
[16] M. Loog, R. P. W. Duin, and R. Haeb-Umbach,“ Multiclass linear dimension Reduction by weighted pairwise fisher criteria,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 7, pp. 762-766, July 2001.
[17] H. F. Hu, “Orthogonal neighborhood preserving discriminant analysis for face recognition,” Pattern Recognition, vol. 41, pp. 2045-2054, 2008.
[18] J. B. Li, J. S. Pan, and S. C. Chu, “ Kernel class-wise locality preserving projection,” Journal of Information Sciences, vol. 178, pp. 1825-1835, 2008.
[19] S. Yan, D. Xu, B. Zhang, H. J. Zhang, Q. Yang, and S. Lin, “Graph embedding and extensions: General framework for dimensionality reduction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 40-51, 2007.
[20] D. Swets and J. Weng, “Using discriminant eigenfeatures for image retrieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 831–836, August 1996.
[21] L.-F. Chen, H.-Y.M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu, “A new LDA-based face recognition system which can solve the small sample size problem,” Pattern Recognition, vol. 33, no. 10, pp. 1713-1726, 2000.
[22] H. Cevikalp, M. Neamtu, M. Wikes, and A. Barkana, “Discriminative common vectors for face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 1, pp. 4-13, 2005.
[23] Z. Li, D. Lin, and X. Tang, “Nonparametric discriminant analysis for face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 4, pp. 755-761, 2009.
[24] M. Bressan and J. Vitria, “Nonparametric discriminant analysis and nearest neighbor classification,” Pattern Recognition Letters, vol. 24, pp.2743-2749, 2003.
[25] X. Jiang, B. Mandal, and A. Kot, “Eigenfeature regularization and extraction in face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 383-394, 2008.
[26] X. G. Wang and X. Tang, “A unified framework for subspace face recognition, “IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1222-1228, 2004.
[27] A. N. Rajagopalan, R. Chellappa, and N. Koterba, “Background learning for robust face recognition with PCA in the presence of clutter,” IEEE Transactions on Image Processing, vol. 14, no. 6, pp. 832-843, 2005.
[28] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Yi Ma, “Robust Face Recognition via Sparse Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 210–227, 2009.
[29] S. K. Zhou, G. Aggarwal, R. Chellappa, and D. W. Jacobs, “Appearance Characterization of Linear Lambertian Objects, Generalized Photometric Stereo, and Illumination-Invariant Face Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 230–245, 2007.
[30] J. Yang, D. Zhang, A. Frangi, and J. Yang, “Two-dimensional PCA: A new approach to appearance-based face representation and recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, pp. 131–137, 2005.
[31] H. Xiong, M. N. S. Swamy and M. O. Ahmad, “Two-dimensional FLD for face recognition,” Pattern Recognition, vol. 38, pp. 1121–1124, 2005.
[32] D. Hu, M. G. Feng and Z. Zhou, “Two-dimensional locality preserving projections(2DLPP) with its application to palmprint recognition,” Pattern Recognition, vol. 40, pp. 339–342, 2007.
[33] T. Ahonen, A. Hadid, and M. Pietikainen, “Face descriptor with local binary patterns: Application to face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 2037–2041, 2006.
[34] B. Zhang, S. Shan, X. Chen and W. Gao, “Histogram of Gabor Phase Patterns(HGPP): A Novel Object Representation Approach for Face Recognition,” IEEE Transactions on Image Processing, pp. 57–68, 2007.
[35] Z. Liu and C. Liu, “Hybrid Color and Frequency Features Method for Face Recognition,” IEEE Transactions on Image Processing, pp. 1975–1980, 2008.
[36] H. S. Lee, and D. Kim, “Tensor-Based AAM with Continuous Variation Estimation: Application to Variation-Robust Face Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1102–1116, 2009.
[37] J. Lu, X. Yuan, and T. Yahagi, “A method of face recognition based on fuzzy C-means clustering and associated sub-NNs,” IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 150-160, 2007.
[38] X. Geng, Z. Zhou, and K. Smith-Miles, “Individual stable space: An approach to face recognition under uncontrolled conditions,” IEEE Transactions on Neural Networks, vol. 19, no. 8, pp. 1354-1368, 2008.
[39] B. Park, K. Lee, and S. Lee, “Face recognition using face-ARG matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 12, pp. 1982-1988, 2005.
[40] Y. Liu, and Y. Chen, “Face recognition using total margin-based adaptive fuzzy support vector machines,” IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 178-192, 2007.
[41] J. Chien, and C. Liao, “Maximum confidence hidden Markov modeling for face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 4, pp. 606-616, 2008.
[42] S. Z. Li, “Face recognition based on nearest linear combinations,” in Proceedings of 1998 Computer Vision and Pattern Recognition, pp. 839-844, Jun 1998.
[43] S. Z. Li, and J. Lu, “Face recognition using the nearest feature line method,” IEEE Transactions on Neural Networks, vol. 10, no. 2, pp. 439-433, 1999.
[44] S. Z. Li, K. L. Chan, and C. L. Wang, “Performance evaluation of the nearest feature line method in image classification and retrieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1335-1339, 2000.
[45] J. T. Chien and C. C. Wu, “Discriminant waveletfaces and nearest feature classifiers for face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 12, pp. 1644-1649, 2002.
[46] H. Du, and Y. Q. Chen, “Rectified nearest feature line segment for pattern classification,” Pattern Recognition, vol. 40, pp. 1486–1497, 2007.
[47] Gilbert Strang and Kai Borre, Linear Algebra, Geodesy, and GPS, Wellesley -Cambridge Press, 1997, pp. 165-171, 1997.
[48] The Olivetti & Oracle Research Laboratory Face Database of Faces, http://www.cam-orl.co.uk/facedatabase.html, 1994.
[49] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and expression database,” IEEE Transactions Pattern Analysis and Machine Intelligence, vol. 25, no. 12, pp. 1615-1618, Dec. 2003.
[50] http://www.iis.sinica.edu.tw
[51] J. Luettin and G. Maitre, “Evaluation protocol for the extended M2VTS database (XM2VTS),” DMI for Perceptual Artificial Intelligence, 1998.
指導教授 范國清、韓欽銓
(Kuo-Chin Fan、Chin-Chuan Han)
審核日期 2011-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明