博碩士論文 955401010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:147 、訪客IP:13.59.141.195
姓名 駱伯遠(Po-Yuan Lo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 噴墨印製有機薄膜電晶體及其閘極之工程設計與可靠度分析研究
(Gate Stack Engineering of Inkjet-Printed Organic Thin Film Transistors and Their Reliability Study)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 高效能矽鍺互補型電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 軟性電子在十年內的發展中以有機材料為主;在多項的研究中以有機半導體材料poly-3-hexyl-thiophene (P3HT)最被重視,並被廣泛應用到有機薄膜電晶體中,其元件的載子傳輸速率為0.01 cm2/V-s,但在實際應用上仍嫌太低,因此如何改善有機電晶體特性,並提升電晶體的可靠度,已是當前最重要的課題之一。
為提升單閘極有機電晶體的元件特性,元件的接觸電阻必須先改進,利用高穩定性的pentacene為有機半導體層,使用該材料來評估當源極與汲極電極位置改變後,是否可因有機半導體與電極的接觸面積增大,而降低元件的接觸電阻。 利用低接觸電阻的元件結構,來分析噴墨印製單閘極P3HT有機電晶體,評估使用噴墨印製法得到圖形化的有機半導體層,是否可有效提升P3HT有機電晶體的電流開關比。為使噴印製成更具效率,溶液的成份與噴墨參數都予以調整,再將此噴墨技術用於全印製的有機電晶體。然而,使用噴墨印製法製作的有機絕緣層,會因為單顆噴頭的印製限制,使絕緣層的薄膜粗糙度上升;因此應用該薄膜於有機電晶體內,會因為絕緣層粗糙度過大,而降低閘極的控制能力,使元件的電流開關比降低2個order。為解決印製絕緣層表面均勻度不佳的問題,以整合旋轉塗佈有機絕緣層,搭配噴墨印製有機半導體於有機薄膜電晶體,進行電晶體特性分析與研究討論。 藉由此穩定的低接觸電阻的電極結構,分析單閘極與雙閘極P3HT 有機電晶體之電性。該結果顯示雙閘極P3HT 有機電晶體表現較單閘極 P3HT 有機電晶體有更突出的特性,如: 透過電場控制以改變元件的操作模式。
除了變化閘極結構外,也可更改有機薄膜電晶體的絕緣層,來達到元件特性變化目的;並應用此有機絕緣層本質的概念,導入具有施體/受體 缺陷互相堆疊的絕緣層於電晶體中,進一步使兩種缺陷相互補償,進而降低元件操作時所造成的不穩定。
利用光等外在因素進行元件電性衰退分析,並評估使用堆疊絕緣層的方式,來改善此衰退現象。 光照射之可靠度分析中,堆疊絕緣層於P3HT 有機電晶體可使元件不具有光敏感的特性。可能的抑制機制將利用電流-電壓與電容-電壓的方法分析並予以佐證。 除了光的施加可造成元件的特性衰退外,品質不佳的絕緣層,亦會因閘極偏壓的施加而導致絕緣層的破壞,並影響元件電特性。為了增加元件的良率,以非破壞性分析(例如:超音波)進行絕緣層的鑑定,以利挑選缺陷較少的有機體絕緣層來製作元件。
在這個研究中,單閘極P3HT有機電晶體的物理限制將會分析,並以施加電位能的方式加以突破;該突破特點,係以利用雙閘極電晶體的結構予以實現。此外,有機薄膜電晶體的特性,可利用絕緣層堆疊時所造成的施體/受體的補償效應,予以調整元件特性並增加元件於光、電與熱等因數下的穩定性。整合論文內的物理概念,提出一種改善多晶有機材料的方法,並予以增加多晶材料的晶粒成長;同時以堆疊犧牲層的方式進行多晶材料的圖形化,藉以達到元件載子傳輸率達0.1 cm2/V-s。
摘要(英) The development of flexible electronics has been focused on the searching of organic materials in the past decade. An organic semiconductor material, poly-3-hexyl-thiophene (P3HT) has been found as a practical semiconductor material. The P3HT used in organic thin film transistors (OTFTs) typically has a carrier mobility of 0.01 cm2/V-s. However, the reliability of P3HT OTFTs needs further improvement for practical application and also needs to be tested under light irradiation.
The low contact resistance device structure was first studied with a pentacene OTFTs of single gate devices and the thermal stability of the devices was evaluated. Base on the device structure, an inkjet printing technique is introduced to print both the semiconductor and the dielectric layers. In the printed semiconductor layer, the ION/OFF of P3HT OTFTs can be increased through a restriction of the printed area. In the printed dielectric layer, the rough dielectric surface reduces the gate controllability on the channel. The poor gate modulation dose reduces the ION/OFF by 2 orders of magnitude on the P3HT OTFTs. Therefore, spin coated dielectric film is suggested to work with inkjet printed P3HT OTFTs. An interesting result of the single gate OTFTs still shows a limitation on modulated device performance of Vth, ION, and operation power. Therefore, a double gate modulation scheme is proposed to control the Vth, ION, and operation power. Other improvements on OTFTs include an organic dielectric modification and a stacked gate dielectric layer. Either the dielectric modification or the stacked dielectric layers show the change of dielectric bulk property, which influences the carrier transportation in the P3HT. To explain a possible mechanism on this improvement, compensation between acceptor-like traps with donor-like traps in the dielectric layers is proposed. The postulate is proven by the I-V characteristics and C-V. For the reliability study, the influence of the photo generated extract electron-holes in the semiconductor are analyzed on the stacked gate dielectrics of the P3HT OTFTs. The influence of the photo generation electron-holes and the traps compensation are discussed systematically. The other reliability issue on single gate dielectric P3HT OTFTs is the introduction of electric stress that causes a defect formation in the poor quality dielectric layer. The defect can be investigated with a non-destructive scanning acoustic microscope (SAM). In order to improve the yield of OTFTs, the gate dielectric film can be inspected by SAM before integrating with the OTFTs. To reach a high performance OTFTs, the knowledge of stacked gate organic layer applied on the interface treatment. The treatment further enhances the grain growth of the polycrystalline thiophene from the electrode and improves the mobility to as high as 0.1 cm2/V-s.
關鍵字(中) ★ 閘極工程
★ 有機薄膜電晶體
★ 可靠度分析
關鍵字(英) ★ Reliability Testing
★ Gate Engrieering
★ Organic Thin Film Transistors
論文目次 中文摘要 I
ABSTRACT III
TABLE OF CONTENTS VI
TABLE CAPTIONS VIII
FIGURE CAPTIONS VIII
Chapter 1 Introduction
1.1 Overview of organic thin film transistors..…………………………………………1
1.2 Introduction of the challenge OTFTs developing……………………………..…....2
1.3 Objectives and scope of the present research…………………………….…..…….3
Chapter 2 Fundament property of inkjet printed organic thin film transistors
2.1 Introduction………………………………………….………………………..…….7
2.2 Inkjet printed semiconductor layer…………………….…………………….……..9
2.3 Inkjet printed dielectric layer……………………….……………………….…….14
2.4 All inkjet printed OTFTs………………………….…………………….…...…….15
2.5 Summary…………………………………………………………………....……. 19
Chapter 3 The influence of electrode geometry on OTFTs performance
3.1 Introduction………………………………………………………………….…….20
3.2 The influence of electrode position on OTFTs performance……….......................21
3.3 The limitation of single gate OTFTs…………………………………………...….29
3.4 Modulation scheme on double gate OTFTs……………………………...………..32
3.5 Summary…………………………………………………………………………..34
Chapter 4 Device performance of OTFTs with stacked organic and gate dielectrics
4.1 Introduction……………………………………………………………………….36
4.2 Interface treatment between dielectric/semiconductor.....………………………...37
4.3 Stacked with modified organic dielectric layer…………………………………...43
4.4 The influence of bulk trap on ~230 nm thick single gate dielectric and stacked gate dielectric………………………………………………………………………………51
4.5 Summary…………………………………………………………………………..57
Chapter 5 Reliability testing on organic thin film transistors
5.1 Introduction……………………………………………………………………… 59
5.2 Thermal stability of small molecular organic semiconductor OTFTs...…………. 59
5.3 Light sensitive on stacked gated dielectric OTFTs and single gated dielectric
OTFTs...………………………………………………………………………….. 67
5.4 Electrical stressed OTFTs...……………………………………………………. . .74
5.5 Non-destructive method to inspect electrical stressed OTFTs...…………………. 77
5.6 Summary…………………………………………………………………………..88
Chapter 6 The mechanism of device performance improvement on gate engineering and stacked gate dielectric
6.1 Introduction……………………………………………………………………… 89
6.2 The empirical equation for double gate OTFTs..……………………………….. .89
6.3 The mechanism of light insensitive in stacked gate dielectric OTFTs..………… 91
6.4 Summary………………………………………………………………………… 96
Chapter 7 Conclusions
7.1 Conclusions……………………………………………………………………... .97
Appendix- OTFTs performance on novel semiconductor material
A.1 The integration of polycrystalline OTFTs...………………………………………99
A.2 Summary………………………………………………………………………. .108
REFERENCE………………………………………………………………………. .109
PUBLICTION LIST……………………………………………………………… ...123
參考文獻 [1] M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and
Polymers, Oxford University Press, New York, 1999.
[2] A. Tsumura, K. Koezuka, T. Ando,” Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Appl. Phys. Lett., 49, pp. 1210–1212, 1986.
[3] G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, “A field-effect transistor based on conjugated alpha-sexithienyl ,” Solid State Commun., 72, pp. 381–384, 1989.
[4] G. Horowitz,” Organic Field-Effect Transistors,” Adv. Mater. 1998, 10, 365–377.
[5] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99–117.
[6] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Electron. Device Lett. , 18,pp. 606–608, 1997
[7] Makoto Noda, Norihito Kobayashi, Mao Katsuhara, Akira Yumoto, Shin-ichi Ushikura, Ryo-ichi Yasuda, Nobukazu Hirai, Gen Yukawa, Iwao Yagi, Kazumasa Nomoto, and Tetsuo Urabe, ” A Rollable AM-OLED Display Driven by OTFTs”, SID10 Digest, pp.710-713, 2010.
[8] http://en.wikipedia.org/wiki/Semiconductor
[9] Christos D. Dimitrakopoulos and Patrick R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics” Adv. Mater. 14, pp.99-117, 2002,
[10] Ken-Tsung Wong, Teng-Chih Chao, Liang-Chen Chi, Ying-Ying Chu, Akula Balaiah, Shih-Feng Chiu, Yi-Hung Liu, and Yu Wang, “Syntheses and Structures of Novel Heteroarene-Fused Coplanar ?-Conjugated Chromophores”, Org. Lett, 8, 5033,2006..
[11] B. Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui,” Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films,” Chem. Mater., 6 ,pp.1809–1815, 1994.
[12] Z. Bao, J. A. Rogers, and H. E. Katz, “Printable organic and polymeric semiconducting materials and devices,” J. Mater. Chem., vol. 9, no. 9, pp. 1895–1904, 1999.
[13] Y. Kato, T. Sekitani, M. Takamiya, M. Doi, K. Asaka, T. Sakurai, and T. Someya, “Sheet-type braille displays by integrating organic field effect transistors and polymeric actuators,” IEEE Trans. Electron Devices, vol. 54, no. 2, pp. 202–209, Feb. 2007.
[14] T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices, vol. 52, no. 11, pp. 2502– 2511, Nov. 2005.
[15] E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D. M. de Leeuw, “A 13.56-MHz RFID system based on organic transponders,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 84–92, Jan. 2007.
[16] P. V. Necliudov, M. S. Shur, D. J. Gundlach and T. N. Jackson:” Contact resistance in pentacene thin film transistors,” Semiconductor Device Research Symp., 2001, p. 345.
[17] D. K. Schroder: Semiconductor Material and Device Characterization (Wiley-Interscience, New York, 1998) 2nd ed., Chap. 3, p. 147.
[18] T. Cui and G. Liang, “Dual-gate pentacene organic field-effect transistors based on a nanoassembled SiO2 nanoparticle thin film as the gate dielectric layer,” Appl. Phys. Lett., vol. 86, no. 6, p. 064 102, Feb. 2005.
[19] G. H. Gelinck, E. van Veenendaal, and R. Coehoorn, “Dual-gate organic thin-film transistors,” Appl. Phys. Lett., vol. 87, no. 7, p. 073 508, Aug. 2005.
[20] M. Spijkman, E. C. P. Smits, P. W. M. Blom, D. M. de Leeuw, Y. Bon Saint Côme, S. Setayesh, and E. Cantatore, “Increasing the noise margin in organic circuits using dual gate field-effect transistors,” Appl. Phys. Lett., vol. 92, no. 14, p. 143 304, Apr. 2008.
[21] J. B. Koo, K. S. Suh, I. K. You, and S. H. Kim, “Device characteristics of pentacene dual-gate organic thin-film transistor,” Jpn. J. Appl. Phys., vol. 46, no. 8A, pp. 5062–5066, 2007.
[22] F. Maddalena, M. Spijkman, J. J. Brondijk, P. Fonteijn, F. Brouwer, J. C. Hummelen, D. M. de Leeuw, P. W. M. Blom, and B. de Boer, “Device characteristics of polymer dual-gate field-effect transistors,” Organic Electron., vol. 9, no. 5, pp. 839–846, Oct. 2008.
[23] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, S. Ponomarenko, S. Kirchmeyer, and W.Weber, “Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors,” Adv. Mater., vol. 15, no. 11, pp. 917–922, Jun. 2003.
[24] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, “Control of carrier density by self-assembled monolayers in organic field-effect transistors,” Nat. Mater., vol. 3, no. 5, pp. 317–322, May 2004.
[25] S. M. Sze, High-Speed Semiconductor Device. New York: Wiley, 1990, pp. 161.
[26] M. Estrada, I. Mejia, A. Cerdeira, and B. Iñiguez, “MIS polymeric structures and OTFTs using PMMA on P3HT layers,” Solid State Electron., vol. 52, no. 1, pp. 53–59, Jan. 2008.
[27] E. J. Meijer, A. V. G. Mangnus, C. M. Hart, D. M. de Leeuw, and T. M. Klapwijk, “Frequency behavior and the Mott–Schottky analysis in poly(3-hexyl thiophene) metal–insulator–semiconductor diodes,” Appl. Phys. Lett., vol. 78, no. 4, pp. 3902–3904, Jun. 2001.
[28] M. Yoshida, S. Uemura, S. Hoshino, T. Kodzasa, and T. Kamata, “Subthreshold behavior in nanoparticle-dispersed poly(3-hexylthiophene) FET,” in Proc. SPIE, Organic Field-Effect Transistors III, 2004, vol. 5522, pp. 89–96.
[29] S. Steudel, S. De Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, “Influence of the dielectric roughness on the performance of pentacene transistors,” Appl. Phys. Lett., vol. 85, no. 19, pp. 4400–4402, Nov. 2004.
[30] C. D. Dimitrakopoulos and D. J. Mascaro:” Organic thin-film transistors: A review of recent advances,” IBM J. Res. Dev. 45 (2001) 11.
[31] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber:” Polymer gate dielectrics and conducting polymer contacts for high-performance organic thin film transistors,” Adv. Mater. 14 (2002) 1717.
[32] T. Jung, A. Dodabalapur, R. Wenz, and S. Mohapatra:” Moisture induced surface polarization in a poly(4-vinyl phenol) dielectric in an organic thin-film transistor,” Appl. Phys. Lett. 87 (2005) 182109.
[33] The degree of ATS- to –OH reaction can be determined from the 1HNMR spectrum. For pristine PVP polymer, the ratio of ‘‘–OH’’ to‘‘phenyl-H’’ was about 1 : 4. In the case of MPVP, the ratio of ‘‘–OH’’ to ‘‘phenyl-H’’ was 0:72 : 4. It means that about 28% of –OH groups on a polymer chain reacted with ATS.
[34] A higher degree of ATS-to-OH reaction means a higher leakage current as measured by metal–insulator–metal device, which composed with other parameters as 0.3 to 0.6 wt %.
[35] M. C. Hamilton, S. Martin, and J. Kanicki, “Organic polymer thin-film photo-transistors, ”IEEE Trans. Electron Devices, vol. 51, no. 6, pp. 877-885, Jun. 2004.
[36] D.A. Neamen, “ Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor,” in Fundamentals of Semiconductor Physics and Devices, 1st ed. New York: McGraw Hill, 2003.
[37] Yong-Young Noh and Dong-Yu Kim, Yuij Yoshida and Kiyoshi Yase, Byung-Jun Jung, Eunhee Lim, and Hong-Ku Shim,” High-photosensitivity p-channel organic phototransistors based on a biphenyl end-capped fused bithiophene oligomer,” Appl. Phys. Lett., vol 86, pp.043501, Jan. 2005.
[38] S.S. Tseng, I. H. Chen, and P. W. Li, “ Photoresponses in Polycrystalline Silicon Phototransistors Incorporating Germanium Quantum Dots in The Gate Dielectrics,” Appl. Phys. Lett., vol.93, pp. 191112, November 2008.
[39] S. Inoue, H. Kawai, S. Kanbe, T. Saeki, and T.Shimoda,
”High-Resolution Microencapsulated Electrophoretic Display (EPD) Driven by Poly-Si TFTs with Four-Level Graysacle,” IEEE Trans. Electron Devices, vol. 49, pp. 1532-1539, Aug. 2002.
[40] H.-T. Lin, Z. Pei, J.-R. Chen, G.-W Hwang, J.-F. Fan, and Y.-J. Chan, “ A new nonvolatile bistable polymer-nanoparticle memory device,” IEEE Electr. Device Lett., vol. 28, pp.951-953, Nov. 2007.
[41] P.-Y. Lo, P.-W. Li, Z.-W. Pei, J. Hou, and Y.-J. Chan,” Enhanced P3HT OTFT transport performance using double gate modulation scheme,” IEEE Electr. Device Lett., vol. 30, pp. 629-631, Jun. 2009.
[42] K. Chartty, S. Banerjee, T. P. Chow, and R. J. Gutmann, “ Hysteresis in Transfer Characteristics in 4H-SiC Depletion/Accumulation-Mode MOSFETs,” IEEE Electr. Device Lett., vol. 23, pp.330-332, Jun. 2002.
[43] M. J. Powell, “Charge trapping instabilities in amorphous silicon–silicon nitride thin-film transistors,” Appl. Phys. Lett., vol. 43, no. 6, pp. 15–17, 1983.
[44] F. R. Libsch and J. Kanicki, “Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous silicon thin-film transistors,” Appl. Phys. Lett., vol. 62, pp. 1286–1288, Dec. 1993.
[45] Karim S. Karim, Arokia Nathan, Michael Hack, and William I. Milne,” Drain-Bias Dependence of Threshold Voltage Stabiity of Amorphous Silicon TFTs,” IEEE Electr. Device Lett., vol. 25, pp.118-190, Jun. 2004.
[46] From Wikipedia, the free encyclopedia. Available: http://en.wikipedia.org/wiki/Polar_effect
[47] Myung-Han Yoon, Choongil Kim, Antonio Facchetti, and Tobin J. Marks, “Gate Dielectric Chemical Structure-Organic Field-Effect Transistor Performance Correlations for Electron, Hole, and Ambipolar Organic Semiconductors,” J. AM. CHME. SOC., vol. 128, pp.12851-12869, May 2006.
[48] L. A. Majewski, R. Schroeder, M. Grell, P. A. Glarvey and M. L. Turner:” High capacitance organic field-effect transistors with modified gate insulator surface,” J. Appl. Phys. 96 (2004) 5781.
[49] V. Y. Butko, X. Chi, D. V. Lang and A. P. Ramirez:” Field-effect transistor on pentacene single crystal,” Appl. Phys. Lett. 83 (2003) 4773.
[50] T. Minari, T. Nemoto and S. Isoda: “Fabrication and characterization of single-grain organic field-effect transistor of pentacene, “J. Appl. Phys. 96 (2004) 769.
[51] H. A. M. van Mullekom, J. A. J. M. Vekemans and E. W. Meijer: “Band-Gap Engineering of Donor–Acceptor-Substituted π-Conjugated Polymers,”Chem.—Eur. J. 4 (1998) 1235.
[52] M. J. Powell, “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors,” Appl. Phys. Lett., vol.43, pp. 597-599, Sep. 1983.
[53] Tobat P. I Saragi, Robert Pudzich, Thomas Fuhrmann, and Josef Salbeck,” Organic phototransistor based on intramolecular charge transfer in a bifunctional spiro compound,” Appl. Phys. Lett., vol.84, pp.2234-2236, Mar. 2004.
[54] Yan Lian, Guifang Dong, Yan Hu, Liduo Wang, and Yong Qiu,” Low-voltage pentacene thin-film transistors with Ta2O5 gate insulators and their reversible light-induced threshold voltage shift,” Appl. Phys. Lett., vol.86, pp.132101, Mar. 2005.
[55] V. Podzorov, V. M. Pudalov, M. E. Gershenson, “ Light-induced switching in back-gated organic transistors with built-in conduction channel,” Appl. Phys. Lett., vol.85, pp. 6039-6041, Dec. 2004.
[56] Yong-Young Noh, Jieun Ghim, Seok-Ju Kang, Kang-Jun Baeg, and Dong-Yu Kim, Kiyoshi Yase, “Effect of light irradiation on the characteristics of organic field-effect transistors,” J. Appl. Phys., vol.100, pp. 094501-094506, Nov. 2006.
[57] Mingqian He and Feixia Zhang, “ Synthesis and structure of alkyl-substituted fused thiophenes containing up to seven rings,” J. Org. Chem., vol. 72, pp. 442-451, 2007.
[58] Jun-Rong Chen, Heng-Tien Lin, Gue-Wuu Hwang, Yi-Jen Chang and Pei-Wen Li, ”The temperature-dependent physical and electrical characteristics of a polymer/RAFT-polymer stabilized nanoparticle system for organic nonvolatile memory,” Nanotechnology, vol. 20, pp.255706, Jun. 2009.
[59] J. M. Shaw and P. F. Seidler:” Organic electronics: Introduction,” IBM J. Res. Dev. 45 (2001) 3.
[60] F. R. Libsch and J. Kanicki, “ Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistor”, Appl. Phys. Lett., vol 62, pp. 1286-1288, March 1993.
[61] G.-H. Gelinck, H.-E.-A. Huitema, E.-V. Veenendaal, E. Cantatore, L. Schrijnemakers, J.-B.-P.-H.-V.-D. Putten, T.-C.-T.-Genus, M. Beenhakkers, J.-B. Giesbers, B.-H. Huisman, E.-J. Meijer, E.-M. Benito, F.-J. Touwslager, A.-W. Marsman, B.-J.-E. Van Rens and D.-M. De Leeuw, “ Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nature materials, vol.3, pp.106-110, Jan. 2007.
[62] L.-W. Kessler, “ Acoustic Microscopy- An Industrial View,” IEEE Ultrasonics Symposium vol. 2, pp.725-728, 1988.
[63] K.-J. Wolter, M. Speck, and R. Heinze, “ Reliability Analysis in Microelectronic Packaging by Acoustic Microscopy,” 28th Int. Spring Seminar on Electronics Technology, IEEE, pp.422-429, 2005.
[64] L. Ma, S. Bao, D. Lv, Z. Du, and S. Li, “ Application of C-mode Scanning Acoustic Microscopy in Packaging,” 8th International Conference on Electronic Packaging Technology, pp.1-6, 2007.
[65] J. Ouellette, “Seeing with Sound”, The Industrial Physicist, June-July, vol.10 pp.14-17, 2004.
[66] J.-C. Yang, “ Non-destructive Identification of Deffects in Interfrated Circuit Packages by Scanning Acoustic Microscopy, “ Microelectron. Reliab., vol 36, no. 9, pp. 1291-1295, Dec. 2006.
[67] W. Lawton, J. Barrett, “ The Application of Acoustic Microscopy to the Characterisation of Non-Standard Microelectronic Packaging Structures,” Proceedings Electronic Components and Technology Conference, pp.1032-1040, 1997.
[68] N. Guo, J. Abdul, H. Du, and B.-S. Wong, “ Ultrasonic Characterization of the interface between a die attach adhesive and a copper leadframe in IC packaging, “ J. Adhes. Sci. Technol. vol. 16, no. 9, pp1261-1279, 2002.
[69] J.P. Charlesworth, J.A.G. Temple, Engineering Applications of Ultrasonic Time-of-Flight Diffraction. England: RESEARCH STUDIES PRESS LTD.
[70] E.-C. Weiss, P. Anastasiadis, G. Pilarczyk, R.-M. Lemor, and P.-V. Zinin, “ Mechanical Properties of Single Cells by High-Frequency Time-Recolved Acoustic Microscopy,” IEEE T. Ultrason Ferr., vol. 54, no. 11, pp. 2257-2271, Nov. 2007.
[71] P. Yalamanchili, A. Christou, S. Martell, and C. Rust, “ C-SAM Sounds the Warning for IC Packaging Defects,” IEEE Circuits & Devices, vol. 10, pp.36-41, 1994.
[72] R. M. Lemor, E. C. Weiss, G. Pilarczyk, “Measurement of Elastic Properties of Cells Using High-Frequency Time-Resolved Acoustic Microscopy,” IEEE Ultrasonics Symposium, vol.1 ,pp 762-765, 2003.
[73] H.-K. Lim and J. G. Fossum, “Threshold voltage of thin-film silicon-on insulator (SOI) MOSFETs,” IEEE Trans. Electron Devices, vol. ED-30, no. 10, pp. 1244–1251, Oct. 1983.
[74] G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, M. Hajlaoui, “The Concept of Threshold Voltage in Organic Field-Effect Transistors,” Adv. Mater., 10, pp.923–927, 1998.
[75] E.J. Meijer, C. Tanase, P.W.M. Blom, E. van Veenendaal, B.-H. Huisman, D.M. de Leeuw, T.M. Klapwijk,” Switch-on voltage in disordered organic field-effect transistors,” Appl. Phys. Lett., vol. 80, pp.3838–3840, 2002.
[76] Schindler A, Brill J, Fruehauf N, Novak JP, Yaniv Z, “Solution-deposited carbon nanotube layers for flexible display applications,”. Physica E 37, pp.119–123, 2007.
[77] Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA, “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes,” Nat Nanotechnol, vol. 2, pp.230–236, 2007.
[78] Payne MM, Parkin SR, Anthony JE, Kuo CC, Jackson TN,” Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V-s,”.J. Am. Chem. Soc. 127:pp.4986–4987, 2005.
[79] Jung-Pyo Hong, Aee-Young Park, Seonghoon Lee, Jihoon Kang, Nayool Shin, and Do Y. Yoon,” Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors,” Appl. Phys. Lett., 92, pp.143311 , 2008.
指導教授 李佩雯、詹益仁
(Pei-Wen Li、Yi-Jen Chan)
審核日期 2010-11-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明