參考文獻 |
[1]A. Simms, It’s time to plug into renewable power, New Scientist, 183, 18-19, 2004.
[2]http://www.ren21.net/globalstatusreport/download/RE_GSR_
2006_Updata.PDF.
[3]http://www.gre-ag.com/en_solarenergie.php/
[4]http://www.alternative-energy-resources.net/
[5]D. M. Chapin, C. S. Fuller, and G. L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys. 25, 676, 1954.
[6]A. Metz, R. Hezel, Easy-to-Fabrcate 20% efficient large-area silicon solar cell. Solar. Energy Materials. and Solar. Cells. 65,325-330, 2001.
[7]T. Takamoto1,M. Kaneiwa1, M. Imaizumi, and M. Yamaguchi, InGap/GaAs -based multijunction Solar Cells, Prog. Photovolt: Res. Appl.13, 495–511, 2005.
[8]J. Rebecca, J. Todd, J. Willliam, W. Sigurd, Y. Jeffrey, and G. Subhendu, Effects of mechanical strain on the performance of amorphous silicon triple-junction solar cells, Conference Record of the IEEE Photovoltaic Specialists Conference, 1214-1217, 2002.
[9]P. Mahawela, G. Sivaraman, S. Jeedigunta, J. Gaduputi, M. Ramalingam, S. Subramanian,S. Vakkalanka, C.S. Ferekides, D.L. Morel, II–VI compounds as the top absorbers in tandem solar cell structures, Materials Science and Engineering B. 116, 283–291, 2005.
[10]H. Hoppea and N. S. Sariciftci, Organic solar cells: An overview, J. Mater. Res. 19, 1924-1945, 2004.
[11]H. Nemec, J. Rochford, O. Taratula, E. Galoppini, P. Kuzel, T. Polivka, A. Yartsev, and V. Sundstrom, Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: A study using ultrafast terahertz spectroscopy, Physical Review Letters. 104, 197401, 2010.
[12]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of Electrically Conducting Organic Polymer:Halogen Derivatives of Polyacetylene. J. Chem. Soc. Chem. Commum. 578-580, 1977.
[13]B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737-740, 1991.
[14]J. Xue1, B. P. Rand1, S. Uchida and S. R. Forrest, A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell, Adv, Mater. 17, 66-71, 2005.
[15]S. Guines, H. Neugebauer and N. S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells, Chem. Rev. 107, 1324−1338, 2007.
[16]C. W. Tang, 2-Layer organic photovoltaic, Appl. Phys. Lett. 48, 183-185, 1986.
[17]J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, "4.2% Efficient Organic Photovoltaic Cells with Low Series Resistances," Applied Physics Letters. 84, 3013 - 3015, 2004.
[18]W. Ma, C, Yang, X. gong, K. Lee, and A. J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Adv. Funct. Mater. 15, 1617-1622, 2005.
[19]H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, A Facile Route to Polymer Solar Cells with Optimum Morphology Readily Applicable to a Roll-to-Roll Process without Sacrificing High Device Performances, Adv. Funct. Mater. 22, E247-E253, 2010.
[20]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science. 270, 1789-1791, 1995.
[21]G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, Design Rules for Donors in Bulk-Heterojunction Tandem Sola Cells-Towards 15% Energy-Conversion Efficiency, Adv. Mater. 20, 579-583, 2008.
[22]G. Li, V. Shrotriya. J. S. Huang, Y. Yao. Moriarty, K. Emery, and Y. Yang. Nat. Mater. 4, 864, 2005.
[23]Y. Zhao, Z. Xie, Y. Qu, Y. Geng, and L. Wang, Solvent-vapor treatment induced performance enhancement of poly„3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells, Appl. phys. Lett. 90. 043504, 2007.
[24]Q. Shi, Y. Hou, X. Liu, and Z. Feng, Annealing effect on the carrier transport (2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene): C60 bulk heterojunction, J. Appl. Phys,. 104, 083707, 2008.
[25]H. Hoppe, and N. S. Sariciftci, Morphology of Polymer/Fullerene Bulk Heterojunction Solar Cells, J. Mater. Chem. 16, 45-61, 2006.
[26]J. Liu, Y. Shi, and Y. Yang, Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices, Adv. Funct. Mater. 11, 420-424, 2001.
[27]M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. Hal, and R. A. J. Janssen, Efficient Methano [70] fullerene/ MDMO-PPV Bulk Hetero-junction Photovoltaic Cells. Angew. Chem. Int. Ed., 42, 3371, 2003.
[28]K. Anusit, P. Phimwipha, K. Annop, I. Phansak, and A. Udom,Influence of crystallizable solvent on the morphology and performance of P3HT:PCBM bulk-heterojunction solar cells, Solar Energy Materials and Solar Cells. 94, 531-536, 2010.
[29]C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, Effect of LiF metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett. 80, 1288-1290, 2002.
[30]M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, PNAS. 105, 2783, 2008.
[31]M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Solar. Energy Materials. And Solar. Cells. 92, 686–714, 2008.
[32]Y.Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G.Li, C. Ray, and L. Yu, For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Adv. Funct, Mater. 22, E135-E138, 2010.
[33]http://feelthephoton.blogspot.com/
[34]M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Solar cell efficiency tables (version 36), Prog, Photovolt: Res. Appl. 18, 346–352, 2010.
[35]S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature. 428, 29, 911-918. 2004.
[36]L. A. Majewski, R. Schroeder, and M. Grell, Low-Voltage, High-Performance Organic Field-Effect Transistors with an Ultra-Thin TiO2 Layer as Gate Insulator, Adv. Funct. Mater. 15, 1017-1022. 2005.
[37]H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, Ultralow-power organic complementary circuits, Nature. 445, 745-748, 2007.
[38]C.-Y. Wei, F. Adriyanto, Y.-J. Lin, Y.-C. Li, T.-J. Huang, D.-W. Chou, and Y.-H. Wang, "Pentacene-Based Thin-Film Transistors With a solution - Process Hafnium Oxide Insulator," IEEE Electron Device Letters. 30, 1039-1041, 2009.
[39]Y. D. Park, D. H. Kim, Y. Jang. M. Hwang, J. A. Lim, and K. Cho, "Low-voltage polymer thin-thin transistors with a self-assembled monolayer as the gate dielectric," Appl. Phys. Lett. 87, 243509-1-243509-3, 2005.
[40]H. N. Raval, S. P. Tiwari, R. R. Navan, S. G. Mhaisalkar, and V. R. Rao, " Solution-Processed Bootstrapped Organic Inverters Based on P3HT With a High- k Gate Dielectric Material," IEEE Electron Device Letters. 30, 484-486, 2009.
[41]D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, C. J. Oliphant D. Knoesen, Thermal-induced changes on the properties of spin-coated P3HT:C60 thin films for solar cell applications, Solar. energy. materials. and solar. cells, 93, 1674-1680, 2009.
[42]K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, Air-Stable Polymer Electronic Devices, Adv. Mater. 19, 2445-2449, 2007.
[43]G. A. O'Brien, A. J. Quinn, D. A. Tanner, and G. Redmond,A Single Polymer Nanowire Photodetector, Adv. Mater. 18, 2379-2383, 2006.
[44]K. Nakamura, T. Hata, and A. Yoshizawa, Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate, Appl. Phys. Lett. 89, 103525, 2006.
[45]S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, Photovoltaic effects on the organic ambipolar field-effect transistors, Appl. Phys. Lett. 90, 063511, 2007.
[46]M. Shkunov, R. Simms, M. Heeney, S. Tierney, and I. McCulloch, Ambipolar Field-Effect Transistors Based on Solution-Processable Blends of Thieno [2,3-b] thiophene Terthiophene Polymer and Methanofullerenes, Adv. Mater. 17, 2608-2612, 2005.
[47]Pivrikas, N. S. Sariciftci, G. Juska and R. Osterbacka, A Review of Charge Transport and Recombination in Polymer/Fullerene Organic Solar Cells, Prog. Photovolt: Res. Appl, , 15, 677-696, 2007.
[48] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science.270,1789-1791,1995.
[49] G Dennler, M. C. Scharber, and C. J. Brabec, Polymer-Fullerene Bulk-Heterojunction, Solar Cells, Adv Mater, 21,1323-1338, 2009.
[50]M. M. Mandoc, W. Veurman, L. J. A.n Koster, B. d. Boer, and P. W. M. Blom, Origin of the Reduced Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells, Adv. Funct, Mater. 17, 2167-2173, 2007.
[51] L. J. Koster, V. D. Mihailetchi, and P. W. M. Blom, Ultimate efficiency of polymer fullerene bulk heterojunction solar cells, Appl. Phys. Lett 88, 093511-1~093511-3, 2006.
[52] D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T Collins and D. S. Ginlley, Band-offset engineering for enhanced open-circuit voltage in polymer-oxide hybrid solar cells, Adv. Funct. Mater. 17, 264-269, 2007.
[53] L. J. A. Koster, V. D. Mihailetch, and P. W. M Blom, Appl. Phys. Lett. 88, 052104-1, 2006.
[54]G. Juska, K. Arlauskas, G. Sliauzys, A. Pivrikas, A. J. Mozer, N. S. Sariciftci, M. Scharber, and R. Osterbacka, Double injection as a technique to study charge carrier transport and recombination in bulk-heterojunction solar cells, Appl. Phys. Lett. 87 ,222110-1, 2005.
[55] K. Tvingstedt, O. Inganäs, Electrode Grids for ITO Free Organic Photovoltaic Devices, Adv. Mater. 19, 2893-2897, 2007.
[56]F. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Inganäs, Polymer Photovoltaic Cells with Conducting Polymer Anodes, Adv. Mater. 14 ,662-665, 2002.
[57] K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies, J. Appl. Phys. 87, 295, 2000.
[58] M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes, Appl. Phys. Lett. 77, 2255, 2000.
[59] M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells. 92, 686–714, 2008.
[60]G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Efficient inverted polymer solar cells, Appl. Phys. Lett. 88, 253503-1, 2006.
[61]M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, PNAS. 105, 2783, 2008.
[62]J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftic, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett. 80, 1288. 2002.
[63]J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Mater. 18, 572, 2006.
[64] T. C. Monson, M. T. Lloyd. D. C. Olson, Y. J. Lee, and J. W. P. Hsu, Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells, Adv. Mater. 20, 4755-4759, 2008.
[65]S. H. Eom, S. Senthilarasu,S. C. Yoon, J. Lee, and S. H. Lee, Nano-Scale ZnO Buffer Layer for Inkjet-Printed Polymer Solar Cells, Journal of Nanoscience and Nanotechnology. 8, 5113-5117, 2008.
[66]SPIE Vol. 6192, 61920D, 2006.
[67]S. Braun, W. Osikowicz, Y. Wang and W. R. Salaneck, Energy level alignment regimes at hybrid organic–organic and inorganic–organic interfaces, Organic. Electrons., 8, 14-20, 2007
[68] S. Khodabakhsh, B. M. Sanderson, J. Nelson, and T. S. Jones, Using Self-Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells, Adv. Funct. Mater. 16, 95-100, 2006.
[69]N. J. Watkins, L. Yan, and Y. Gao, Electronic structure symmetry of interfaces between pentacene and metals, Appl. Phys. Lett. 80,4384-4386, 2002.
[70] N. J. Watkins, S. Zorba, and Y. Gao, Interface formation of pentacene on Al2O3, J. Appl. Phys. 96, 425-429, 2004.
[71]J. Epstein, F.-C. Hsu, N.-R. Chiou and V. N. Prigodin, “Electric-field induced on-leveraged metal–insulator transition in conducting polymer-based field effect devices”, Current Applied Physics. 2, 339-343, 2002.
[72] T. Skotheim, R. Elsenbaumer, J. Reynolds (Eds), Handbook of Conducting Polymers, Marcel Dekker, New York, 27-121. 1998.
[73]S. Andrzej, The influence of the electrical field on structures dimension measurement in electrostatic force microscopy mode, Opt. Appl. 39, 933-941, 2009
[74] R. M. Nyffegger, and R. M. Penner, Electrostatic force microscopy of nanocrystals with nanometer-scal resolution, Appl. Phys. Lett. 71, 1878-1880, 1997.
[75]J. K. J. Duren, X. Yang. J. Loos, C. W. T. B. Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, Relating the Morphology of Poly(p-phenylene vinylene)/Methanofullerene Blends to Solar-Cell Performance, Adv. Funct. Mater. 14, 425-434. 2004.
[76]J. K. J. van Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Relating the Morphology of Poly(p-phenylene vinylene)/Methanofullerene Blends to Solar-Cell Performance, Adv. Funct. Mater. 14 425-434, 2008
[77]S. H. Jin, B. V. Naidu, H. S. Jeon, S. M. Park, J. S. Park, S. C. Kim, J. W. Lee and Y. S. Gal, Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system, Solar. Energy Materials. and Solar. Cells 91, 1187-1193, 2007.
[78]J. W. Kang, W. I. Jeong, J. J, Kim, H. K. Kim, D. G. Kim, and G. H. Lee, High-Performance Flexible Organic Light-Emitting Diodes Using Amorphous Indium Zinc Oxide Anode, Electrochem. Solid. State. Lett 10 (2007) J75-J78.
[79]Y. Liying,X. Hao, T. Hui, Y. Shougen, Z. Fengling, Effect of cathode buffer layer on the stability of polymer bulk heterojunction solar cells, Solar Energy Materials and Solar Cells. 94, 1831-1834, 2010.
[80]Y. Bin, l. Qian, Y. Liying, W. Xiaoming, L. Zunfeng, H. Yulin, Y. Shougen, and C. Yongsheng, Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells, Journal of Nanoscience and Nanotechnology. 10, 1934-1938, 2010.
[81]J. K. Lee, N. E. Coates, S. Cho, N. Sung. Cho, D. Moses, G. C. Bazan, K. Lee, and A. J. Heeger, Efficacy of TiOx optical spacer in bulk-heterojunction solar cells processed with 1,8-octanedithiol, Appl. Phys. Lett. 92, 243308, 2008.
[82]E. Ahlswede, J. Hanisch and M. Powalla, Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells, Appl. Physic. Letters. 90, 163504, 2007.
[83]A. M. Nardes, M. Kemerink, R.A. J. Janssen, J.A. M. Bastiaansen, N.M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, Microscopic Understanding of the Anisotropic Conductivity of PEDOT:PSS Thin Films, Adv. Mater, 19, 1196-1200, 2007.
[84]S. K. Hau, H. L. Yip, N. S. Baek. J. Zou, K. O'Malley, and A. K.-Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Appl. Phy. Lett. 92, 253301, 2008.
[85]W. A. Nevin and G.A. Chamberlain, Effect of Oxide Thickness on Properties of Metal-Insulator-Organic Semiconductor Photovoltaic Cells, IEEE Transactions on Electron Devices, Vol. 40, No. 1, 1993.
[86]T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, Appl. Phys. Lett. 75, 1679, 1999.
[87]M. Jorgensen, K. Norrman, and F. C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells. 92, 686-714, 2008.
[88]T. H. Huang, H. C. Huang, and Z. Pei, Temperature-dependent ultra-thin polymer layer for low voltage organic thin-film transistors. Org. Electron. 11, 618-625. 2010.
[89]R. O. Loutfy, Y-H Shing and D. K. Murti, Conductor-Insulator-Semiconductor
Organic Solar Cells. Solar Cells. 5, 331-341, 1982.
[90]G. Horowitz, Organic Field-Effect Transistors, Adv. Mater. 10, NO. 5, 1998.
[91]J. D. Servaites, S. Yeganeh, T. J. Marks and M.A. Ratner, Efficiency Enhancement in Organic Photovoltaic Cells:Consequences of Optimizing Series Resistance, Adv. Funct. Mater. 20, 97-104, 2010.
[92]G. Li, V. Shrotriya. J. S. Huang, Y. Yao. Moriarty, K. Emery, and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4, 864-868, 2005.
[93]G. J. Brabec, V. Dyakonov, J. Parisi and N. S. Sariciftci, Organic Photovoltaics: Concepts and Realization, 215, 2003.
[94]P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, Science, Controlling Polymer-Surface Interactions with Random Copolymer Brushes, 275, 1458, 1997.
[95]H.H. Liao, L.M. Chen, Z. Xu, G. Li, Y. Yang, Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer, Appl. Phys. Lett. 92, 173303, 2008.
[96]N. Li, B.E. Lassiter, R.R. Lunt, G. Wei, S.R. Forrest, Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells, Appl. Phys. Lett. 94, 023307, 2009.
[97]J.S. Kim, J.H. Park, J.H. Lee, J. Jo, D.Y. Kim, K. Cho, Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics, Appl. Phys. Lett. 91, 112111, 2007.
[98]J.A. Hauch, P. Schilinsky, S.A. Choulis, S. Rajoelson, C.J. Brabec, The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells, Appl. Phys. Lett. 93,103306, 2008.
[99]F. Mariano, M. Mazzeo, Y. Duan, G. Barbarella, L. Favaretto, S. Carallo, R. Cingolani, and G. Gigli, Very low voltage and stable p-i-n organic light-emitting diodes using a linear S,S-dioxide oligothiophene as emitting layer, Appl. Phys. Lett. 94, 063510, 2008 .
[100]S. Monfraya, C. Fenouillet-Berangerb, G. Bidala, F. Boeufa, S. Denormea, J.L. Huguenina, M.P. Samsona, N. Loubeta, J.M. Hartmannb, Y. Campidellia, V. Destefanisa, C. Arveta, K. Benotmaneb, L. Clementa, O. Faynotb and T. Skotnickia, Thin-film devices for low power applications , Solid-State Electronics. 54, 90-96, 2010.
[101]U. Zschieschang,F. Ante, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, K. Kern, and H. Klauk, Flexible Low-Voltage Organic Transistors and Circuits Based on a High-Mobility Organic Semiconductor with Good Air Stability , Adv. Mtaer. 22, 982–985, 2010.
[102]S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature. 428, 911-918. 2004.
[103]U. Zschieschang, F. Ante, T. Yamamoto,K. Takimiya, H. Kuwabara, M. Lkeda, T. Sekitani, T. Someya, K. Kern, and H. Klauk, Flexible Low-Voltage Organic Transistors and Circuits Based on a High-Mobility Organic Semiconductor with Good Air Stability, Adv. Mater. 22, 982-985, 2010.
[104]Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics, IEEE Electron Device Letters. 18, 87-89 (1997).
[105]Y. D. Park, D. H. Kim, Y. Jang. M. Hwang, J. A. Lim, and K. Cho, "Low-voltage polymer thin-thin transistors with a self-assembled monolayer as the gate dielectric," Appl. Phys. Lett. 87, 243509-1-243509-3, 2005.
[106]H. N. Raval, S. P. Tiwari, R. R. Navan, S. G. Mhaisalkar, and V. R. Rao, " Solution-Processed Bootstrapped Organic Inverters Based on P3HT With a High- k Gate Dielectric Material," IEEE Electron Device Letters. 30, 484-486, 2009.
[107]P. Pingel, A. Zen, R. D. Abellón, F. C. Grozema, L. D. A. Siebbeles, D. Neher, Temperature-resolved local and macroscopic charge carrier transport in thin P3HT layers, Adv. Funct. Mater. 20, 2286-2295, 2010.
[108]S. Cho1, K. Lee1, J. Yuen, G. Wang, D. Moses, A. J. Heeger, M. Surin, and R.Lazzaroni, Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films, J. Appl. Phys. 100, 114503, 2006.
[109]D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, C. J. Oliphant D. Knoesen, Thermal-induced changes on the properties of spin-coated P3HT:C60 thin films for solar cell applications, Solar. energy. materials. and solar. Cells. 93, 1674-1680, 2009.
[110]C. J. Ko, Y. K. Lin, and F. C. Chen, Microwave Annealing of Polymer Photovoltaic Devices, Adv. Mater. 19, 3520-3523, 2007.
[111]H. H. Yu, S. J. Hwang, R. L. Chen, and C. Y. Yang, Study of the purifying affects of thermal annealing for polymer-wall liquid crystal cells, Liquid Crystals. 35, 1339-1343, 2008.
[112]E. W. Okraku, M. C. Gupta, K. D. Wright, Pulsed Laser Annealing of P3Ht/PCBM Organic Solar Cells, Org. Electron.12, 2013-2017, 2010.
[113]H-W Kang, K-K Han, J-E Park, and H-H Lee, "High mobility, low voltage polymer transistor," Org. Electron. 8, 460-464, 2007.
[114]H. S. Tan, T. Cahyadi, Z. B. Wang, A. Lohani, Z. Tsakadze, S. Zhang, F. R. Zhu, and S. G. Mhaisakar, "Low-Temperature-Processed Inorganic Gate Dielectrics for Plastic-Substrate-Based Organic Field-Effect Transistors ," IEEE Electron Device Letters. 29, 698-700, 2008.
[115]C.-Y. Wei, F. Adriyanto, Y.-J. Lin, Y.-C. Li, T.-J. Huang, D.-W. Chou, and Y.-H. Wang, "Pentacene-Based Thin-Film Transistors With a solution - Process Hafnium Oxide Insulator," IEEE Electron Device Letters, vol. 30, no. 10, pp. 1039-1041, 2009.
[116]H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, " Ultralow-power organic complementary circuits," Nature. 15, 745-748, 2007.
[117]J. M. Ball, P. H. Wobkenberg, F. Colleaux, M. Heeney, J. E. Anthony, I. McCulloch, D. C. Bradley, and T. D. Anthopoulos, Solution Processed Low-Voltage Organic Transistors and Complementary invertrs, Appl. Phys. Lett. 95, 103310, 2009.
[118]Y. F. Yu, C. K. Jui, H. M. Yu, and L. C. Chin, High-performance poly(3-hexylthiophene) transistors with thermally cured and photo-cured PVP gate dielectrics, Journal of Materials Chemistry. 18, 5927-5932, 2008.
[119]H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, Ultralow-power organic complementary circuits, Nature. 445, 745-748, 2007.
[120]R. A. L. Jones, R. W. Richards, Polymer at Surfaces and Interfaces, Cambridge University Press, Cambridge, UK 1999.
[121]P. F. Burroughes, C. A. Jones, R. H. Friend, New semiconductor device physics in polymer diodes and transistors, Nature. 335, 137-141, 1988.
[122]H sirringhaus, N. Tessler, R. H. Friend, Integrated Optoelectronic Devices Based on Conjugated Polymers, Science. 280, 1741-1744, 1998.
[123]Heng-Tien Lin, Zingway Pei, Jun-Rong Chen, and Yi-Jen Chan, “An UV Erasable Stacked Diode-Switch Organic Nonvolatile Bistable Memory on Plastic Substrates”, IEEE Electron Device Letters. 30, 18-20, 2008.
[124]D. J. Gardiner, (1989). Practical Raman spectroscopy. Springer-Verlag. ISBN 978-0387502540.
[125]D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, C. J. Oliphant, and D. Knoesen, The influence of thermal annealing on the morphology and structural properties of a conjugated polymer in blends with an organic acceptor material, J Mater Sci. 44, 3192–3197, 2009.
[126]D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, C. J. Oliphant D. Knoesen, Thermal-induced changes on the properties of spin-coated P3HT:C60 thin films for solar cell applications, Solar. energy. materials. and solar. Cells. 93, 1674-1680, 2009.
[127]J. Lewis, Material challenge for flexible organic devices, materials today 9, 39-45,
2006.
[128]S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, Photovoltaic effects on the organic ambipolar field-effect transistors, Appl. Phys. Lett. 90, 063511, 2007.
[129]H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, " Ultralow-power organic complementary circuits," Nature, vol. 445, no. 15, pp. 745-748, 2007.
[130]N. Keniji, H. Takuya, Y. Atsushi, O. Katsunari, E. Hiroyuki and K. Kazuhiro, Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate, Appl. Phys. Lett. 89, 103525, 2006,
[131]E. J. Meijer, D. M. Deleeuw, S. Setayesh, E. V. Veenendaal, B.-H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Solution-processed ambipolar organic field-effect transistors and inverters, Nature, 2, 678-682, 2003.
[132]T. H. Huang, H. C. Huang, and Z. Pei, Temperature-dependent ultra-thin polymer layer for low voltage organic thin-film transistors. Org. Electron. 11, 618-625. 2010.
[133]J. M. Ball, P. H. Wobkenberg, F. Colleaux, M. Heeney, J. E. Anthony, I. McCulloch, D. C. Bradley, and T. D. Anthopoulos, Solution Processed Low-Voltage Organic Transistors and Complementary invertrs, Appl. Phys. Lett. 95, 103310, 2009.
[134]W. A. Nevin and G.A. Chamberlain, Effect of Oxide Thickness on Properties of Metal-Insulator-Organic Semiconductor Photovoltaic Cells, IEEE Transactions on Electron Devices. Vol. 40, No. 1, 1993.
[135]Choong, V. Park, Y. Gao, Y. Wehrmeister, T. Mullen, K. Hsieh, B. R. Tang, C. W, Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer Ca deposition, Appl. Phys. Lette. 10, 1492-1494, 1996.
[136]H. Becker,S. E. Burns and R. H. Friend, Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers, Phys. Rev. B 56. 1893–1905, 1997.
[137]L. J. Koster, V. D. Mihaletchi, and P. W. M. Blom, Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells, Appl. Phys. Lette, 88. 152104, 2006.
[138]G. Zhao, Y. He, and Y. Li, 6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization , Adv. Mater. 22, 4355-4358, 2010.
|