博碩士論文 983202056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.144.20.66
姓名 劉宗強(Tsung-chiang Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用風洞實驗研究蒸發皿蒸發率與風速之關係
(Wind Effect on the Evaporate Rate of Class A Evaporation Pan)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用風洞實驗來研究風速對A型蒸發皿蒸發速率的影響。實驗結果發現在風速U > 5 m s-1的狀況下,蒸發皿內的水會產生蕩漾波,波高會高於皿高,最後導致水濺出蒸發皿,濺出水量遠大於蒸發量。這表示在無人觀測的狀況下,濺出水量會誤認為蒸發量,造成高估蒸發速率的現象。且在相同的風速下,風所驅動之盪漾波及濺出水量會因為不同水位計而有所不同,水位計在蒸發皿外的濺出水量比水位計在蒸發皿內的濺出水量大。比對現地觀測的四年(2004-2008)資料發現,濺出水量會造成年蒸發率4.31 %的誤差。除此之外,研究結果亦發現蒸發皿的初始水深會影響蒸發速率,當風速U = 4 m s-1時,初始水深在8公分以上時,蒸發速率並未有明顯減少,但當初始水深為6公分時,則蒸發速率較標準水深20公分的蒸發速率減少26%。但當風速愈小,皿壁的遮蔽效應就愈不明顯。風速U = 2 m s-1,初始水深從20公分變為6公分時,蒸發速率幾乎相同。本研究也發現在相同風速U = 4 m s-1、淨輻射量Rn = 200 W m-2的狀況下,蒸發皿底下有無一木製棧板,蒸發皿的蒸發速率皆相同,亦即棧板不會影響蒸發皿的蒸發速率。
摘要(英) This study used wind tunnel experiments to investigate the wind effect on the evaporation rates of Class A evaporimeter pan. The experimental results revealed that high wind speed (U > 5 m s-1) could generate seiche wave inside the pan. The wave height was higher than the rim of the pan, and water was spill out of the pan. Namely, the water loss from the pan is not entirely due to evaporation and the evaporation rates could be over-estimated at high wind speeds. By checking the wind speed and evaporation rates of a four-year (2004-2008) field observation collected in Taiwan, it was found the ratio of yearly water loss due to the spill to the average evaporation rate is 4.31 %. In addition, this study examined the influence of initial water depth in the pan on the evaporation rate. The results demonstrated that the evaporation rate decreased as the water depth decreased when the water depth is less than a critical depth. The evaporation rate of water depth 6 cm is about 26% that of standard depth (20 cm) when wind speed U = 4 m s-1. It was also found that with or without a wooden platform underneath the pan, the evaporation rates are the same.
關鍵字(中) ★ 風速
★ 蒸發皿
★ 盪漾波
★ 風洞實驗
關鍵字(英) ★ Evaporation pan
★ seiche wave
★ wind tunnel experiment
論文目次 Abstract II
Contents III
Notation IV
Figure captions V
Table captions VI
1. Introduction 1
2. Experimental setup 4
3. Results and discussion 6
3.1 Laboratory experiments 6
3.2 Field observation 9
4. Conclusions 12
References 13
Figures 17
Tables 36
Appendix A 39
參考文獻 Allen, R. G., and Pruitt, W. O. (1991). “FAO-24 reference evapotranspiration factors.” Journal of Irrigation and Drainage Engineering, ASCE, 117 (5), 758-773.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrigation and drainage paper, Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.
Brutsaert, W. (1982). Evaporation into the Atmosphere. D. Reidel Publishing Co., The Netherlands. 113-116.
Brutsaert, W., and Parlange, M. B. (1998). “Hydrologic cycle explains the evaporation paradox.” Nature, 396, 30.
Chattopadhyay, N., and Hulme, M. (1997). “Evaporation and potential evapotranspira- tion in India under conditions of recent and future climate change.” Agricultural and Forest Meteorology, 87, 55-73.
Chu, C. R., Li, M. H., Chen, Y. Y., and Kuo, Y. H. (2010). “A wind tunnel experiment on the evaporation rate of Class A evaporation pan.” Journal of Hydrology, 381(3-4), 221-224.
Cuenca, R. H. (1989). Irrigation system design: an engineering approach. Prentice-Hall, Englewood Cliffs, New Jersey, p.552.
Dawson, T. E., Burgess, S. S. O., Tu, K. P., Oliveira, R. S., Santiago, L. S., Fisher, J. B., Simonin, K. A., Ambrose, A. R. (2007). “Night-time transpiration in woody plants from contrasting ecosystems”, Tree Physiology, 27, 561-575.
Dingman, S. L. (2002). Physical Hydrology. 2nd edition, Prentice Hall Inc., New Jeresy, 288-290.
Doorenbos, J., and Pruitt, W. O. (1977). Guidelines for predicting crop water requirem- ents. FAO Irrigation and Drainage Paper 24. Food and Agriculture Organization of the United Nations, Rome, Italy.
Grace, J. (1974). “The effect of wind on grasses. I. Cuticular and stomatal transpiration.
” Journal of Environmental Botany. 25(86), 542-551.
Grismer, M. E., Orang, M., Snyder, R., and Matyac, R. (2002). “Pan evaporation to re-
ference evapotranspiration conversion methods.” Journal of Irrigation and Drain-
age Engineering. ASCE, 128(3), 180-184.
Hobbins, M. T., Ramirez, J. A., and Brown, T. C. (2004). “Trends in pan evaporation a-
nd actual evapotranspiration across the conterminous U.S.: Paradoxical or compl- ementary?” Geophy. Res. Lett., 31, L13503, doi:10.1029/2004GL019846.
Irmak, S., Haman, D. Z., and Jones, J. W. (2002). “Evaluation of class A pan coefficie-
nts for estimating reference evapotranspiration in humid location.” Journal of Irr-
igation and Drainage Engineering. ASCE, 128(3), 153-159.
Jackson, R. D. (1973). “Diurnal changes in soil water content during drying.” Soil Sci. Soc., 37-55.
Liu, B., Xu, M. Henderson, M., and Gong, W. (2004). “A spatial analysis of pan evap-
oration trends in China, 1955–2000.” J. of Geophysical Research, 109, 1-9.
Lopez-Urrea, R., Martın de Santa Olalla, F., Fabeiro, C., and Moratalla, A. (2006). “A- n evaluation of two hourly reference evapotranspiration equations for semiarid c- onditions.” Agricultural Water Management. 86, 277-282.
McAneney, K. J., Itier, B. (1996). “Operational limits to the Priestley-Taylor formula.” Irrigation Science. 17, 37-43.
Molina Martinez J. M., Martinez Alvarez, V., Gonzalez-Real, M. M., and Baille, A., (2006). “A simulation model for predicting hourly pan evaporation from meteoro- logical data.” Journal of Hydrology. 318, 250-261.
Monteith, J. L. (1981). “Evaporation and surface temperature.” Quart. J. Royal Meteor. Soc., 107, 1-27.
Nandagiri, L., and Kovoor, G. M. (2005). “Sensitivity of the Food and Agriculture Org- anization Penman-Monteith evapotranspiration estimates to alternative procedures for estimation of parameters.” Journal of Irrigation and Drainage Engineering. ASCE, 131(3), 238-248.
Nandagiri, L., and Kovoor, G. M. (2006). “Performance evaluation of reference evapo- transpiration equations across a range of Indian climates.” Journal of Irrigation and Drainage Engineering. ASCE, 132(3), 238-249.
Novick, K. A., Oren, R., Stoy, P. C., Siqueira, M. B. S., and Katul, G. G. (2009). “Noct- urnal evapotranspiration in eddy-covariance records from three co-located ecosys- tems in the Southeastern U.S.: Implications for annual fluxes.” Agricultural and Forest Meteorology, 149(9), 1491-1504.
Orang, M. (1998). Potential accuracy of the popular non-linear regression equations f- or estimating pan coefficient values in the original and FAO-24 tables, Report, C- alif. Dept. of Water Resources, Sacramento, California, U.S.A.
Penman, H. L. (1948). “Natural evaporation from open water, bare soil and grass.” Pr- oc. Royal Soc. of London. A193, 120-146.
Pereira, A. R. Villa Nova, N. A., Pereira, A. S., and Barbieri, V. (1995). “A model for the class A pan coefficient.” Agricultural and Forest Meteorology, 76(2), 75-82.
Peterson, T. C. Golubev, V. S., and Groisman, P. Y. (1995). “Evaporation losing its str- ength.” Nature, 377, 687-688.
Priestley, C. H. B. and Taylor, R. J. (1972). “On the assessment of surface heat flux and evaporation using large-scale parameters.” Mon. Weather Rev., 100, 81-82.
Raghuwanshi, N. S., and Wallender, W. W. (1998). “Converting from pan evaporation to evapotranspiration.” Journal of Irrigation and Drainage Engineering, ASCE, 124(5), 275-277.
Rayner, D. P. (2007). “Wind run changes: The dominant factor affecting pan evaporati- on trends in Australia.” Journal of Climate, 20, 3379-3394.
Roderick, M., and Farquhar, G. D. (2002). “The causes of decreased pan evaporation over the past 50 years.” Science, 298, 1410-1411.
Roderick, M., and Farquhar, G. D. (2004). “Changes in Australian pan evaporation fro- m 1970 to 2002.” International Journal of Climatology, 24, 1077-1090.
Roderick, M., and Farquhar, G. D. (2005). “Changes in New Zealand pan evaporation since 1970s.” International Journal of Climatology, 25, 2031-2039.
Sentelhas, P. C., and Folegatti, M. V. (2003). “Class A pan coefficients (Kp) to estimate daily reference evapotranspiration (ET0).” Revista Brasileira de Engenharia Agrí- cola e Ambiental, Campina Grande, 7(1), 111-115.
Snyder, R. L. (1992). “Equation for evaporation pan to evapotranspiration conversions.
” Journal of Irrigation and Drainage Engineering, ASCE, 118(6), 977-980.
Stanhill, G. (2002). “Is the Class A evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements?” Agricultu- ral and Forest Meteorology, 112(3-4), 233-236.
Tebakari, T., Yoshitani, J., and Suvanpimoi, C. (2005). “Time-space trend analysis in pan evaporation over kingdom of Thailand.” J. of Hydrological Engineering, ASCE, 10 (3), 205-215.
Thom, A. S., Thony, J. L., and Vauclin, M. (1981). “On the proper employment of eva- poration pans and atmometers in estimating potential transpiration.” Quart. J. Roy. Meteor. Soc., 107, 711-736.
Trajkovic, S. (2005). “Temperature-based approaches for estimating reference evapotr- anspiration.” Journal of Irrigation and Drainage Engineering, ASCE, 131 (4), 316-323.
指導教授 朱佳仁(Chia-ren Chu) 審核日期 2011-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明