參考文獻 |
1. Gillott, J.E., “Alkali-aggregate reaction in concrete,” Engineering Geology, Vol.9, pp.303-326, 1975.
2. Stanton, T.E., “Influence of Cement and Aggregate on Concrete Expansion,” Engineering News-Record, 124, pp.59-61, 1940
3. Stanton, T.E., “Expansion of Concrete Through Reaction Between Cement and Aggregate,” Transactions, American Society of Civil Engineers, Vol. 107,pp. 54-126, 1942.
4. Touma, W.E., Fowler, D.W., and Carrasquillo, R.L., “Alkali-silica reaction in portland cement concrete: testing methods and mitigation alternatives,” Research Report ICAR 301-1F, 2001.
5. Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167-191, April 2000.
6. Ludmila, D. M., “Handbook of concrete aggregates,” Noyes Publications, Park Ridge, New Ridge, New Jersey, U.S.A., 1983.
7. 吳尚謙,「加速鋰離子傳輸技術對鋼筋和混凝土性質影響及工程應用初探」,國立中央大學土木工程研究所,碩士論文,2010。
8. 王韡蒨,「台灣地區活性粒料之檢測方法研究」,國立中央大學土木工程研究所,碩士論文,2003。
9. 李釗、許書王、陳桂清,「由破裂之消波塊探討鹼骨材反應」,港灣報導,pp.30-40,1996。
10. Lee, C., “Available alkalis in fly ash and their effects on alkali-aggregate reaction,” Ph.D., Dissertation, Iowa State University, 1986.
11. Stark, D.C., “Lithium salt admixtures – an alternative method to prevent expansion alkali-silica reactivity,” Portland Cement Association, July 1992.
12. 蔣元駒、韓素方,『混凝土工程病害與修補加固』,海洋出版社,北京,中國,pp.365-406,1996 年7 月。
13. Standard Australia, “Alkali Aggregate Reaction – Guidelines on Minimizing the Risk of Damage to Concrete Structures in Australia,” p.20, 1996.
14. Hadley, D.W., “Alkali reactivity of carbonate rocks-expansion and dedolomitization,” Proceeding Highway Research Board, Vol.40, pp.462-474, 1961.
15. 西林新藏,成功大學演講記錄,1993 年3 月。
16. Cole, W.F., Lancuk, C.J. and Sandy, M.J., “Products formed in an aged concrete,” Cement and Concrete Research, Vol.11, pp.443-454, 1981.
17. 許書王,「台灣地區鹼質與粒料反應抑制策略之研究」,博士論文,國立中央大學土木工程研究所,中壢,1999 年。
18. 王淑慧,「台灣地區岩石之鹼-粒料反應潛能研究」,碩士論文,國立中央大學土木工程研究所,中壢,1999 年。
19. Van, A., J.H.P. and Visser, S., “Formation of hydrogarnets: calcium hydroxide attack on clays and feldspars,” Cement Concrete and Research, Vol.7, pp.39-44, 1977.
20. Van, A., J.H.P. and Visser, S., “Reaction of Ca(OH)2 and of Ca(OH)2 +CaSO4. 2H2O at various temperatures with feldspars in aggregates in aggregate used for concrete making,” Cement Concrete and Research, Vol.8, pp.677-681, 1978.
21. Hobbs, D. W., “Expansion of concrete due to alkali-silica reaction the structural engineer,” Cement, Concrete, and Aggregate, England, 1984.
22. McCoy, W. J., “Effect of hydration on water solubility of ions in Portland cement,” Martin Marietta Corp., U.S.A., pp.35-46, 1978.
23. Young. J. F., and Mindess, S., “Concrete,” Prentice, INC. Englewood Cliffs, New Jersey, pp. 94-148.
24. British Cement Association, “The diagnosis of alkali-silica reaction-report of a working party,” pp.36, 1992.
25. Lenzner, D. and Lueswig V., “The alkali aggregate reaction with opaline sand stone from schleswig holstein,” Cement and Concrete Research, Vol. 16., pp.181-189, 1986
26. http://www.cement.org/, Concrete Technology.
27. ASTM C289-07, “Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method),” Annual Book of ASTM Standards.
28. ASTM C295-90, “Standard Guide for Petrographic Examination of Aggregates for Concrete,” Annual Book of ASTM Standards.
29. ASTM C1293-95, “Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete Due to Alkali-Silica Reaction,” Annual Book of ASTM Standards.
30. ASTM C227-10, ”Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual Book of ASTM Standards.
31. ASTM C1260-94, ”Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual Book of ASTM Standards.
32. ASTM C441-05, “Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete Due to the Alkali-Silica Reaction,” Annual Book of ASTM Standards.
33. ASTM C1567-08, “Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method),” Annual Book of ASTM Standards.
34. Bashar T., Ghassan N., “Using lithium nitrate and pozzolanic glasspowder in concrete as ASR suppressors,” Cement and Concrete Composites, Vol. 30, pp.497-505, 2008.
35. 廖啟州、黃偉慶、蘇茂豐,廢鑄砂與電弧爐碴混合料取代瀝青混凝土粒料成效探討,工業污染防治季刊,第103期,第23-36頁,2007年。
36. 中聯礦石公司網頁。
37. 許伯良,轉爐石之處理與應用,中聯資源公司,民國98年。
38. 陳立、蘇茂豐、李婉諦、黃偉慶,以電弧爐氧化碴鋪築環保道路之案例研究及規範探討,工業污染防治工程實務技術研討會,第373-391頁,1999年。
39. 蘇茂豐,電弧爐爐碴資源化歷程,綠基會通訊,第11-14頁,2010年。
40. 立順興資源科技公司,http://re-source.smartweb.tw/。
41. Torkittikul, P., and Chaipanich, A., Utilization for ceramic waste as fine aggregate within Portland cement and fly ash concretes, Cement and Concrete Composites, Vol. 32, pp. 298-305, 2010.
42. Puertas, F., Garcia-Diaz, I., Barba, A., Gazulla, M.F., Palacios, M., Gomez, M.P., and Martinez-Ramirez, S., Ceramic wastes as alternative raw materials for Portland cement clinker production, Cement and Concrete Composites, Vol. 30, pp. 798-805, 2008.
43. 環保署網頁,http://www.epa.gov.tw/。
44. 朱明瑜,添加廢玻璃砂於排水瀝青混凝土成效之影響,國立成功大學土木系,碩士論文,2007年。
45. 陳金獅,廢玻璃再利用於瀝青路面之研究,國立雲林科技大學營建工程系,碩士論文,2001年。
46. 李清華、馬雲風、林俊旭、林凱隆,國內外廢液晶顯示器回收處現況分析,工業污染防治,第108期,第81-102頁,2008年。
47. 吳逸翔,垃圾焚化飛灰溶渣混凝土工程性質之探討,國立聯合大學防災科技研究所,碩士論文,2006年。
48. 陳彥鳴,廢玻璃資源化再利用技術及潛勢分析,國立台北科技大學環境規劃與管理研究所,碩士論文,2003年。
49. 中華輕質骨材協會,「水庫淤泥輕質骨材之燒製與應用」,人造輕質骨材及輕質骨材混凝土在兩岸的生產、應用和發展概況研討會,第1-19頁,2005年。
50. 顏聰,「水庫淤泥資源化應用-輕質骨材之燒製與量產」,水庫淤泥輕質骨材混凝土產製及規範研討會論文集,第3-16頁,2003年。
51. 林凱隆,「廢鑄砂之特性及資源化技術研究」,桃園縣大學校院產業環保技術服務團(http://setsg.ev.ncu.edu.tw/)。
52. 李宗勳,垃圾焚化混合灰與廢鑄砂集塵灰共融熔渣於水泥砂漿工程性質之影響,國立聯合大學防災科技研究所,碩士論文,2009年。
53. 廢鑄砂資源化應用技術手冊,經濟部工業局,2001年。
54. Ichikawa T., “Alkali–silica reaction, pessimum effects and pozzolanic effect,” Cement and Concrete Research, Vol. 39, pp. 716-726, 2009.
55. Multon S., Cyr M., Sellier A., Diederich P., Petit L., “Effects of aggregate size and alkali content on ASR expansion,” Cement and Concrete Research, Vol. 40, pp. 508-516, 2010.
56. Saccani A., Bignozzi M. C., “ASR expansion behavior of recycled glass fine aggregates in concrete,” Cement and Concrete Research Vol.40, pp.531–536, 2010.
57. Ducman V., Mladenovic A., Suput J.S., “Lightweight aggregate based on waste glass and its alkali–silica reactivity,” Cement and Concrete Research, Vol.32, pp.223-226, 2002.
58. Mladenovic A., Suput J.S., Ducman V., Skapin A. S., “Alkali–silica reactivity of some frequently used lightweight aggregates,” Cement and Concrete Research, Vol. 34, pp. 1809-1816, 2004.
59. Schwarz N., Cam H., and Neithalath N., “Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash,” Cement and Concrete Composites, Vol. 30, pp. 486-496, 2008.
60. Garcia-Diaz E., Bulteel D., Monnin Y., Degrugilliers P., and Fasseu P., “ASR pessimum behaviour of siliceous limestone aggregates,” Cement and Concrete Research, Vol. 40, pp. 546-548, 2010.
|