博碩士論文 983202601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.133.128.171
姓名 朴亦明(Iponsyah Putra)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 考量擾動因子情況下傳統鐵路時刻表建置合併於高速鐵路時刻表模型之回顧與探討
(Review of Traditional Train Timetables Generation and Incorporation into High-Speed Railway Timetable Model Considering Disturbances)
相關論文
★ 路權取得資料探勘與決策輔助工具設計之研究★ 以時空資料庫管理管線單位道路申挖許可之雛形系統研究
★ 關鍵基礎設施相依性模型設計與應用★ 應用RFID技術於室內空間防救災時的疏散指引系統之研究
★ 考量列車迴轉與擾動因子情況下高速鐵路系統最佳化排班設計之研究★ 應用資料探勘分群分類演算法與空間資料庫技術在鋪面裂縫影像辨識之初探
★ 以本體論建構工程程式設計課程之線上考試平台研究★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例
★ 設計整合型手持式行動裝置平台於災害設施損毀資料收集研究★ 緊急疏散指示系統之設計與評估
★ 整合八分樹結構與適應性網格於光達資料重建室內建物三維模型之研究★ 關鍵基礎設施相依性分析:以竹科某晶圓廠區為例
★ 建築資訊模型於火災原因調查流程的應用★ Hadoop雲端平台在工程應用之探討研究
★ 交通改善計畫對區域交通汙染排放之影響-以臺鐵桃園段高架化為例★ 關鍵基礎設施投入產出停轉模型之回顧與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣高速鐵路(Taiwan High-Speed Railway,THSR)系統在台灣為保持高效率乘客運輸扮演著重要的角色,越來越多人依賴於它的穩定與可靠的運輸服務。然而,高鐵與傳統鐵路系統的控制方面有很大的不同,對於高鐵列車而言,列車司機無法控制自己的列車,僅有高鐵控制中心人員才可以給予控制命令,這是為了確保司機操控的列車能夠遵循列車時刻表。當災害發生時,控制中心需要重新排班產生新的列車時刻表,讓列車司機可以遵循。有些研究針對列車重新排班問題已經有所貢獻,包含重新排班的高鐵相關限制等,因此,本研究主要目的在探索高鐵時刻表可行性模型之基礎,回顧以前的相關研究,有許多文獻皆使用循環性的時刻表模型。本研究完整回顧與分析所有與高鐵時刻表相關的期刊論文,從1989年開始直到最近2011年,列車時刻表模型包含列車調度問題、可行性解法、非循環性時刻表、路徑問題、月台路徑選擇問題等,本研究列車時刻表目標為最小化重新排班的班表與原時刻表之差異度,在此重新排班列車時刻表中,有三種方面需要考慮,如旅行時間、安全性與高鐵商業考量。為了滿足所有條件,時刻表模型應該遵循高鐵設施的相關限制。
摘要(英) The Taiwan High-Speed Railway (THSR) system plays an important role in maintaining efficient transportation of passengers around Taiwan. Right now, more and more people depend on its stable operations and reliable services. However, the control mechanism between THSR and traditional railway systems is quite different. Drivers on THSR trains cannot control the cars by themselves; only the control center of THSR can give the commands, which are based on the train timetables and should be followed by the drivers to operate the cars. Moreover, when a disaster occurs, the control center needs to prepare a rescheduled timetable in accordance with current situations so that drivers can follow. Few researchers have addressed such problems regarding timely preparation of a rescheduled timetable for the TSHR system under disturbances. Therefore, this research aims to find out a feasible model of timetable based on review in previous research studies that use the cyclic patterns of timetable. There are many journals and publications that have been collected and reviewed in this thesis, starting from 1989 until the latest year, 2011. It contains the problems on scheduling trains in timetable e.g. timetable optimization, feasible solution search, acyclic pattern, routing problems through a station, etc. The main problem in this research is finding an optimal solution by minimizing the difference between the original timetable and the rescheduled timetable under disturbances. There are three aspects that need to be taken into account such as travel time, safety and commercial consideration when solving this problem. To fulfill all of these aspects, the model should has constraints that satisfy the needed of HSR infrastructure.
關鍵字(中) ★ 時刻表
★ 循環式
★ 可行模式
★ 最小化
關鍵字(英) ★ cyclic
★ feasible model
★ minimizing
★ timetable
論文目次 摘要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii
CHAPTER 1 INTRODUCTION 1
1.1. Background and Motivation 1
1.2. Research Objectives 7
1.3. Research Scope and Limitations 8
1.4. Research Methodology 9
1.4.1. Conduct literature review 10
1.4.2. Find the basic of timetable research problem 10
1.4.3. Determine previous researches and Link to current model 11
1.4.4. Incorporate into the current model 12
1.4.5. Validate the current model 13
1.4.6. Draw conclusions and recommendations 13
1.5. Structure of Report 13
CHAPTER 2 LITERATURE REVIEW 14
2.1. Train Timetabling Problem: Cyclic / Periodic Timetabling 14
2.1.1. Cyclic timetabling problem model since 1989-2000 14
2.1.2. Cyclic timetabling problem model since 2000 - 2011 17
2.2. Train Timetabling Problem: Acyclic / Non Periodic Timetabling 23
2.3. Routing Trains Problem through a Railway Stations 30
2.4. High-Speed Railway Timetable 37
2.4.1. Basic of High-Speed Railway Timetabling Problem 37
2.4.2. Train Traffic Rescheduling at Double Tracks Railways Line in a Network Station 42
2.4.3. Railway Traffic Rescheduling at More Than Two Track Railways Line in Network Station 44
2.5. Summary of Literature Review 46
CHAPTER 3 MODEL FORMULATION 49
3.1. Characteristics of Train Timetabling Problem 49
3.1.1. Scheduling 54
3.1.2. Rescheduling 55
3.2. Objective Function 57
3.3. Travel Time Constraint 62
3.4. Travel Time in Line Constraint 64
3.5. Station / Dwell Time Constraint 65
3.6. Headway Time Constraints 67
3.7. Safety Constraints 69
3.8. Another Constraint 70
3.9. Model Method 71
3.10. Sensitivity Analysis 73
3.10.1.Sensitivity Analysis Determine Changes in the Value of the Parameters of the model 74
3.10.2. Sensitivity Analysis Determine Changes in the Structure of the model 75
CHAPTER 4 MODEL DEVELOPMENT AND RESULTS 77
4.1. Problem Description 77
4.2. The Proposed Mathematical Model 78
4.2.1. Mathematical Model 78
4.2.2. Notations and Indexes 84
4.3. Results and Model Checking 85
CHAPTER 5 CONCLUSIONS 90
5.1. Conclusions 90
5.2. Recommendations 92
5.3. Contributions 93
REFERENCES 94
APPENDIX: THSR Timetables (2010) 100
1. THSR Southbound Timetable 100
2. THSR Northbound Timetable 102
MASTER THESIS EXAMINATION REPORT 105
參考文獻 Alfieri, A., Groot, R., Kroon, L., Schrijver, A. (2006). Efficient circulation of railway rolling stock. Transportation Science 40(3), 378–391.
Anthony, R. N., (1965). Planning and Control Systems: a framework for analysis. Harvard University, Boston.
Ardun, J. P., Ni, J. (2005). French TGV network development. Japan Railway & Transport Review, 40, 22–28.
Assad, A. A. (1980), Models for rail transportation, Transportation Research A, 14, 205–220.
Bussieck, M.R., Winter, T., Zimmermann, U.T. (1998a). Discrete optimization in public rail transport. Mathematical Programming, 79, 415-444.
Bussieck, M.R. (1998b). Optimal Lines in Public Rail Transport. Dissertation Doctoral. Department of mathematics and computer science. The Technical University of Braunschweig.
Caprara, A., Fischetti, M., Guida, P., Monaci, M., Sacco, G., Toth, P. (2001). Solution of real world train timetabling problems. In Proceeding of HICSS 2001.
Caprara, A., Fischetti, M., Toth, P. (2002). Modeling and solving the train timetabling problem. Operations Research, 50(5), 851-861.
Caprara, A., Monaci, M., Toth, P.,Guida, P. L. (2006). A Lagrangian heuristic algorithm for a real-world train timetabling problem. Discrete Applied Mathematics, 154, 738 – 753.
Carey,M., Carville,S. (2003). Scheduling and platforming trains at busy complex stations. Transportation Research Part A, 37, 195–224.
Carey, M., Crawford, I., (2000). Scheduling trains through a series of busy complex stations. Research Report. Faculty of Business and Management, University of Ulster, N. Ireland, BT37 0QB.
Carey, M., Crawford, I. (2007). Scheduling trains on a network of busy complex stations. Transportation Research Part B, 4, 159–178.
Castillo, E., Hadi, A.S., Conejo, A., Fernandez, C.A. (2004). A General Method for local sensitivity analysis with application to regression models and other optimization problems. Technometrics, 46(4), 430–444.
Castillo, E., Galego, I., Ure ̃na, J. M., Coronaldo, J. M. (2008). Timetabling optimization of a single railway track line with sensitivity analysis. Sociedad de Estadistica e Investigacion Operativa, 17, 256–287.
Chang, Y. H., Yeh C. H., Shen, C. C. (2000). A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line. Transportation Research Part B, 34, 91-106.
Cheng, Y. (1998). Hybrid simulation for resolving resource conflicts in train traffic rescheduling. Computers in Industry, 35, 233–246.
Chiu, C. K., Chou, C. M., Lee, J. H. M., Leung, H. F., Leung, Y. W. (2002). A constraint-based interactive train rescheduling tool. Kluwer Journal Academic Publishers, 7, 167–198.
Cohon, J. L., (1978). Multi objective Programming and Planning. Academic Press, New York.
Firdausiyah, N. (2010). Timetabling optimization design considering train circulation and disturbances for high-speed rail system. Master Thesis. Civil Engineering. National Central Univerisity.
Frank, O. (1966). Two-way traffic on a single line. Operations Research, 14 (5), 801–811.
Harker, P. T. (1990). The use of ATCS in scheduling and operating railroads: Models, algorithms and applications.Transportation Research Record, 1263, 101-110.
Higgins, A., Kozan, E., Ferreira, L. (1996). Optimal scheduling of trains on a single line track. Transportation Research Part B, 30, 147-161.
Hooghiemstra, J. S. (1996). Design of regular interval timetables for strategic and tactical railway planning. In: Allan, J.,Brebbia, C.A., Hill, R.J., Sciutto, G., Sone, S. (Eds.), Computers in Railways V, 1. Computational Mechanic Publications, Southampton, UK, 393-402.
Ho, T. (2011). Model optimization considering train circulation and disturbances for high-speed rail system. Technique Report. National Central University.
Huisman, D., Kroon, L. G., Lentink, R. M, Vromans, M. J. C. M. (2005). Operations research in passenger railway transportation. Statistica Neerlandica, 59(4), 467–497.
ILOG. (2001). ILOG Cplex 7.1, Reference Manual.
ILOG. (2007). ILOG Cplex 11.0, User’s Manual.
Kroon, L. G., Dekker, R., Vromans, M. J. C. M., (2007). Cyclic railway timetabling: a stochastic optimisation approach. Lecture Notes in Computer Science, 4359, 41–66.
Kroon, L. G., Maro ́ti, G., Helmrich, M. R., Vromans, M. J. C. M., Dekker, R. (2008). Stochastic improvement of cyclic railway timetables. Transportation Research Part B, 42, 553–570.
Kroon, L.G., Romeijn, H. E., Zwaneveld, P. J. (1997). Routing trains through railway stations: Complexity issues. European Journal of Operational Research, 98(3), 485-498.
Kroon, L. G., Peeters, L. W. P. (2003), A variable trip time model for cyclic railway timetabling, Transportation Science, 37, 198–212.
Lin, C. Y. (1995). The high-speed rail project and its privatization in Taiwan. Rail International, 175-179.
Lindner, T. (2000). Train schedule optimization in public rail transport. Ph.D. thesis, Technical University Braunschweig, Braunschweig, Germany.
Nachtigall, K., Voget, S. (1996). A genetic algorithm approach to railway synchronization. Computer Operation Research, 23, 453–463.
Nachtigall, K., Voget, S. (1997). Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks. European Journal Operation Research, 103, 610–627.
Odijk, M. A. (1996). A constraint generation algorithm for the construction of periodic railway timetables. Transportation Research, 30, 455–464.
Odijk, M. A. (1997). Railway timetable generation. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
Peeters, L. W. P., Kroon, L. G. (2003). A cycle-based optimization model for the cyclic railway timetabling problem. S. Vos, J. R. Daduna, eds. Computer Aided Scheduling of Public Transport, Springer, Berlin, Germany, 275–296.
Schrijver, A., Steenbeek, A. (1994). DienstregelingontwikkelingvoorRailned (Timetable construction for Railned). Technical report, C.W.I. Center for Mathematics and Computer Science, Amsterdam, The Netherlands.
Serafini, P., Ukovich, W. (1989). A mathematical model for periodic event scheduling problems. SIAM J. Discrete Math, 2(4), 550–581.
Taiwan Shinkansen Corporation. (2007). Equipment and operational manual of THSR.
Taiwan Shinkansen Corporation. (2007). System specification for operation function in THSR.
To ̈rnquist, J., Persson, J. A. (2007). N-tracked railway traffic re-scheduling during disturbances. Transportation Research Part B, 41, 342–362.
Yan, S., Shih, Yu-Lin. (2009). Optimal scheduling of emergency roadway repair and subsequent relief distribution. Computers & Operations Research Journal, Vol. 36,
2049-2066.
Zwaneveld, P.J., Dauze ̀re-Pe ́re ̀s, S., van Hoesel, S. P. M., Kroon, L. G., Romeijn, H. E., Salomon, M., Ambergen, H. W. (1996). Routing trains through railway stations: Model formulation and algorithms, Transportation Science, 30 (3), 181-194.
Zwaneveld, P. J., Kroon, L. G., van Hoesel, S. P. M. (2001). Routing trains through a railway station based on a node packing model. European Journal Operation Research, 128, 14–33.
指導教授 周建成、朱致遠
(Dr. Chien-Cheng Chou、Dr. Chih-Yuan Chu)
審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明