博碩士論文 983202065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.190.219.178
姓名 黃瀚正(Han-jheng Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 隨機旅行時間下車輛補貨路線規劃之研究
(Routing for the truck replenishment problem under stochastic travel times)
相關論文
★ 橋梁檢測人力機具排班最佳化之研究★ 勤業務專責分工下消防人員每日勤務排班最佳模式之研究
★ 司機員排班作業最佳化模式之研究★ 科學園區廢水場實驗室檢驗員任務指派 最佳化模式之研究
★ 倉儲地坪粉光工程之最佳化模式研究★ 生下水道工程工作井佈設作業機組指派最佳化之研究
★ 急診室臨時性短期護理人力 指派最佳化之探討★ 專案監造人力調派最佳化模式研究
★ 地質鑽探工程人機作業管理最佳化研究★ 職業棒球球隊球員組合最佳化之研究
★ 鑽堡於卵礫石層施作機具調派最佳化模式之研究★ 職業安全衛生查核人員人力指派最佳化研究
★ 救災機具預置最佳化之探討★ 水電工程出工數最佳化之研究
★ 石門水庫服務台及票站人員排班最佳化之研究★ 空調附屬設備機組維護保養排程最佳化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在車輛補貨問題中,如何有效地調派車輛並將貨物準時送達,為一重要課題,過去有關車輛補貨相關研究,很少考量旅行時間之隨機性,大多以平均旅行時間做為排程之依據,在實際營運時若隨機擾動過大,將造成原本排程失去最佳性。而目前實務上車輛補貨排程,大多採規劃人員之經驗進行規劃,此種方式缺乏系統最佳化分析,往往在營運時造成資源的浪費因此,本研究主要於模式中加入旅行時間隨機性考量,建構隨機性車輛補貨路線規劃模式,以提供決策者輔助工具,可有效地規劃車輛補貨路線排程。
本研究利用時空網路流動的技巧,以總運送成本最小化為目標,並考量實際營運下旅行時間之隨機性,建立一隨機性模式,此模式包含車流網路與物流網路。此外,本研究進一步修正隨機性模式之旅行時間唯一固定平均旅行時間,發展一確定性模式。隨機性模式與確定性模式可定式為一含額外限制之整數多重貨物網路流動問題,屬NP-hard問題,當面對實務大規模問題,難以在有限時間內求得最佳解。因此,本研究透過問題分解,並配合數學規劃軟體CPLEX,發展一有效率之啟發式演算法。為評估確定性模式與隨機性模式於實際營運之績效,本研究發展一模擬評估方法,以比較兩模式之優劣。最後,為評估模式與演算法求解效率,本研究以台灣一供應商運送業者為例,進行範例測試,並進行不同參數之敏感度分析,結果顯示隨機模式表現比確定性模式為佳,於實際營運中可大幅地降低未滿足需求之額外處理量產生。
摘要(英) In truck replenishment problem, how to deliver goods efficiently on time becomes a more important problem. In the past few years, many VRP under deterministic travel time has been discussed and researched by many scholars. But stochastic disturbances arising from variations in vehicle travel times in actual operations are neglected. Then the stochastic travel time will make the planned schedule lose its optimality. Therefore, we constructed a stochastic truck replenishment model that considered the influence of stochastic travel times.
We employed network flow techniques with the objective of minimizing total cost to construct the stochastic model that considered the stochastic travel times, including vehicle-flow and commodity-flow networks. Then, we modified the stochastic travel time in the stochastic truck replenishment model as an average travel to develop a deterministic model. Both stochastic model and deterministic model are formulated as the integer multiple commodity network flow problem, which is characterized as NP-hard. Since the problem sizes are expected to be huge in real practice, the models are difficult to be solved in a reasonable time. Therefore, we develop an effective heuristic algorithm by adopting a problem decomposition technique, coupled with a mathematical programming solver CPLEX. To evaluate how well the stochastic model and the deterministic model, we also developed a simulation-based evaluation method. Finally, we use a real data and suitable assumptions and sensitive analysis to test our model. The test results of stochastic model is better than deterministic model because stochastic model produces low shortage cost.
關鍵字(中) ★ 隨機性旅行時間
★ 多重貨物網路流動問題
★ 時空網路
★ 啟發解
★ 車輛補貨
關鍵字(英) ★ Stochastic travel times
★ Time-space network
★ Multiple commodity network flow problem
★ Heuristics
★ Truck replenishment
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目 錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的與範圍 3
1.3研究方法與流程 3
第二章 文獻回顧 6
2.1車輛途程問題(Vehicle Routing Problem, VRP) 6
2.1.1車輛途程問題 6
2.1.2具時窗限制車輛途程問題(Vehicle Routing Problem With Time Window, VRPTW) 10
2.2時空網路相關文獻 13
2.3大型含額外限制整數網路流動問題啟發式演算法 16
2.4隨機性問題之相關理論與文獻 19
2.4.1隨機性問題相關理論 19
2.4.2隨機擾動相關文獻 20
2.5小結 22
第三章 模式構建 24
3.1問題描述 24
3.2隨機性車輛補貨路線規劃模式 24
3.2.1模式基本假設或已知資訊 24
3.2.2隨機性旅行時間模式之時空網路 26
3.2.2.1車流時空網路 26
3.2.2.2物流時空網路 30
3.2.2.3非預期懲罰成本說明 33
3.2.3模式符號說明 41
3.2.4數學定式 42
3.3確定性日營運車輛配送模式 43
3.3.1確定性模式之時空網路 44
3.3.2確定性模式之數學定式 46
3.4模擬評估方法 47
3.5模式應用 47
3.6小結 48
第四章 模式求解 49
4.1演算法初始解 49
4.2演算法改善解 55
4.3範例驗證 57
4.4 小結 58
第五章 範例測試 60
5.1輸入資料 60
5.1.1補貨排程規劃所需之相關參數 60
5.1.2車隊資料 60
5.1.3貨物成本資料 61
5.2模式發展 62
5.2.1問題規模 62
5.2.2模式輸入資料 63
5.3電腦演算環境及設定 64
5.3.1電腦演算環境 64
5.3.2相關參數設定 64
5.3.3模式輸出資料 65
5.4測試結果與分析 65
5.4.1隨機性補貨模式測試結果 66
5.4.2不同模式間之分析比較 67
5.5敏感度分析 68
5.5.1車流提早狀況之非預期懲罰成本之敏感度分析 68
5.5.2後續受影響貨物量之敏感度分析 70
5.6情境分析 72
5.6.1車流提早狀況之非預期懲罰成本之折減率分析 72
5.7小結 74
第六章 結論與建議 75
6.1結論 75
6.2建議 76
6.3貢獻 76
參考文獻 78
附錄 85
附錄一 CPLEX Callable Library Code 85
附錄二 零售點資料 86
參考文獻 1.呂英志(2002),「即時資訊下車輛路線問題之研究」,碩士論文,逢甲大學交通工程與管理學系。
2.李義祥(2005),「多階層供應鏈配銷批量和車輛途程模式之研究」,博士論文,國立台灣科技大學工業管理系。
3.卓裕仁、朱佑旌(2008),「兩階段回溯式門檻接受法求解時窗限制回程取貨車輛路線問題之研究」,運輸計劃季刊,第三十七卷,第四期,第405-430頁
4.林益生(1998),「隨機環境下多商品、多車種派車問題之研究」,碩士論文,中原大學工業工程研究所。
5.林國顯、蘇振維、鄭嘉盈、張瓊文、陳雅琴、王勤銓、陳柏江(2010),「行車成本調查分析與交通建設計畫經濟效益評估之推廣應用 (1/2) 」,交通部運輸研究所。
6.邱明琦、陳春益、林佐鼎(2002),「海運貨櫃排程模式之研究」,運輸計劃季刊,第三十一卷,第三期,第495-522頁。
7.美國供應鏈管理專業協會網站,http://cscmp.org/aboutcscmp/definitions.asp,參照日期:2010/11/2。
8.唐存寬(1999),「在顧客需求為隨機之假設下多種貨品儲運分配系統設計」,碩士論文,國防管理學院資源管理研究所。
9.張有恒(1998),物流管理,初版,華泰文化。
10.張宗勝、溫日華、吳淑娟(2007),「接駁轉運營運系統最佳營運策略之探討」,運輸學刊,第十九卷,第一期。
11.張清濱(2008),「動態車輛路線巡迴問題之數學模式建構與分析」,碩士論文,國立成功大學交通管理科學研究所。
12.張褔榮(2005),物流管理,二版,五南書局。
13.莊貿凱(2005),「派車專家-車輛途程分析系統應用於零擔貨運業」,碩士論文,南台科技大學工業管理研究所
14.許晉嘉(2003),「宅配業貨物配送路線規劃問題之研究」,碩士論文,國立成功大學交通管理科學研究所。
15.郎茂祥(2006),「多配送中心車輛調度問題的模型與算法研究」,交通運輸系統工程與訊息,第六卷,第五期,第65-69頁。
16.游俊雄、丁國樑(1998),「需求反應旅次運載模擬模式應用於捷運營運班表之評估」,運輸計劃季刊,第二十七卷,第三期,第489-508頁。
17.楊大輝、李綺容(2007),「需求變動下之航空貨運網路規劃」,運輸學刊,第十九卷,第二期,第169-189頁。
18.齊志仁(2002),「隨機需求下長途客運排程暨班次表設計規劃模式之研究」,碩士論文,國立中央大學土木工程研究所。
19.劉奕青(2003),「自動販賣機存貨途程問題之研究」,碩士論文,私立元智大學工業工程管理研究所。
20.郭佳林(2005),「求解具時間窗之多趟次車輛途程問題」,碩士論文,國立交通大學運輸科技與管理科系。
21.陳妙珍、顏上堯、張珮璇(2000),「航空公司資產與負債管理模式之建立」,第四屆海峽兩岸會計與管理學術研討會論文集,武漢。
22.陳春益、邱明琦(2002),「貨櫃航線網路設計模式之研究」,運輸計劃季刊,第三十一卷,第二期,第267-298頁。
23.陳麗玉(1999),「全球化供應鏈管理績效評估與探討」,碩士論文,國立政治大學資訊管理學系。
24.陳政德(2005),「即時資訊下物流配送問題之研究」,碩士論文,逢甲大學交通工程與管理學系。
25.謝騰飛(2010),「使用螞蟻演算法求解隨機需求車輛路徑問題-以販賣機補貨車為例」,碩士論文,國立高雄第一科技大學運籌管理系。  
26.韓復華、卓裕仁 (1996),「門檻接受法、成本擾動法與搜尋空間平滑法在車輛路線問題之應用研究與比較分析」,運輸學刊,第九卷,第三期,頁103-129。
27.韓復華、楊智凱、卓裕仁(1997),「應用門檻接受法求解車輛路線問題之研究」,運輸計畫季刊,第二十六卷,第二期,頁253-280。
28.簡信惠(1998),「在隨機需求下特價商品之最佳訂購量與最適售價決策模式」,碩士論文,國立成功大學工業管理學系。
29.顏上堯、何淑萍(1994),「飛航排程暨班次表之建立」,運輸計劃季刊,第二十三卷,第一期,第73-90頁。
30.顏上堯、翁綵穗(2001),「季節轉換間緩衝期飛航排程之研究」,運輸計劃季刊,第三十卷,第四期,第891- 922 頁。
31.蘇文清(2005),「軟時窗限制下探討同時正逆向物流之車輛途程問題」,碩士論文,國立中央大學土木工程研究所。
32.蘇雄義譯(2003),David Simchi-Levi、Philip Kaminsky、Edith Simchi-Levi著,供應鏈之設計與管理:觀念、策略、個案,台北:美商麥格羅希爾。
33.Abara, J. (1989), “Applying integer linear programming to the fleet assignment problem,” Interfaces, Vol. 19, pp. 20-28.
34.Agin, N. and Cullen, D. (1975), “An algorithm for transportation routing and vehicle loading,” Logistics, pp. 1-20, North Holland, Amsterdam.
35.Bodin, L., Golden, B., Assad, A. and Ball, M. (1983), “Routing and Scheduling of Vehicles and Crews:The State of The Art,” Computers & Operations Research, Vol. 10, pp. 63-211.
36.Burns, L., Hall, R., Blumenfeld, D. and Daganzo, C. (1985), “Distribution strategies that minimize transportation and inventory costs, ”Operations Research Vol. 33, pp. 469–490.
37.Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M. W.P. and Vance, P.H. (1998), “Branch-and-price: column generation for solving huge integer programs,” Operations Research, Vol. 46, pp. 316-329.
38.Benders, J.F. (1962), “Partitioning procedures for solving mixed-variables programming problems,” Numerische Mathematik, Vol. 4, pp. 238-252.
39.Bertazzi, L. and M. G. Speranza (1997), “Minimization of Logistic Costs with Given Frequencies,” Transportation Research Part B, Vol.31, pp.327-340.
40.Bertazzi, L., G. Paletta, and M.G. Speranza (2002), “Deterministic Order-Up-To Level Policies in an Inventory Routing Problem,” Transportation Science, Vol.36, pp.119-132.
41.Bertazzi,L., M. G. Speranza, W. Ukovich (2000), “Exact and Heruistic Solutions for a Shipment Problem with Given Frequencies,” Management Science, Vol.46, pp.973-988.
42.Bowersox, D.J. (1987), “Logistics paraerns of logistical organization,” Journal of Business Logistics, pp. 65-80.
43.Camerini, P.K., Fratta, L. and Maffioli, F. (1975), “On improving relaxation methods by modified gradient techniques,” Mathematical Programming Study, Vol. 3, pp. 6-25.
44.Chen, C.Y. and Kornhauser, A.L. (1990), “Decomposition of convex mulitcommodity network flow problem,” Report SOR-90-19, Dept. of Civil Engineering and Operations Research, Princeton University, Princeton, NJ.
45.Chien, T. W., A. Balakrishan and Womg, R. T. (1989), “An Inventory Allocation and Vehicle Routing Problem,” Transportation Science, Vol. 23, pp. 67-77.
46.Chih, K.C.K. (1986), “A real time dynamic optimal freight car management simulation model of multiple railroad, mulitcommodity temporal spatial flow problem,” Ph.D. Dissertation, Princeton University, Princeton, NJ.
47.Desaulniers, G., Desrosiers, J., Dumas, Y., Solomon, M. M. and Soumis, F. (1997), “Daily aircraft routing and scheduling,” Management Science, Vol. 43, pp. 841-855.
48.Dorigo, M., Maniezzo, V. and Colorni, A. (1996), “The ant system: optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 26, pp. 29-41.
49.Dueck, G. (1993), “New optimization heuristics: the great deluge algorithm and the record-to-record travel,” Journal of Computational Physics, Vol. 104, pp. 86-92.
50.Dueck, G. and Scheuer, T. (1990), “Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing,” Journal of Computational Physics, Vol. 90, pp. 161-175.
51.Eberhart, R. C. and Kennedy J. (1995), A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science pp. 39-43. IEEE service center, Piscataway, NJ, Nagoya, Japan.
52.Ellram, L.M. (1991), “Supply chain management: the industrial organization perspective,” International Journal of Physical Distribution & Logistics Management, Vol. 21 No.1, pp.13-22.
53.Fisher, M. L. (1981), “The Lagrangian relaxation method for solving integer programming problem,” Management Science, Vol. 27, pp. 1-18.
54.Geem, Z.W., Kim, J.H., and Loganathan, G.V. (2001), “A new heuristic optimization algorithm: harmony search,” Simulation, Vol. 76, pp. 60-68.
55.Glover, F. (1989), “Tabu search-part1,” ORSA Journal on Computing, Vol. 1, pp. 190-206.
56.Glover, F. (1990), “Tabu search-part II,” ORSA Journal on Computing, Vol. 2, pp. 4-32.
57.Glover, F., and Laguna, M. (1997). Tabu search, Kluwer Academic Publishers, Massachusetts.
58.Gu, J. and Huang, X. (1994), “Efficient local search with search space smoothing: a case study of the traveling salesman problem (TSP),” IEEE Transaction on Systems, Man and Cybernetics, Vol. 24, pp. 728-739.
59.Golden, B., Assad, A., Levy, L. and Gheysens, F. (1984), “The fleet size and mix vehicle routing problem,” Computers & Operations Research, Vol. 11, pp. 49–66.
60.Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R., Nemhauser, G. L., and Sigismondi, G. (1995), “The fleet assignment problem: solving a large-scale integer program,” Mathematical Programming Study, Vol. 70, pp. 211-232.
61.Holland, J. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor: University of Michigan Press.
62.Houlihan, J. B. (1985), “International Supply Chain Management”, International Journal of Physical Distribution and Materials Management, Vol. 15, pp. 22-38.
63.Kennington, J. L. and Shalby, M. (1977), “An effective subgradient procedure for minimum cost multicommodity flow problem,” Management Science, Vol. 23, pp.994-1004.
64.Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), “Optimization by simulated annealing,” Science, Vol. 220, pp. 671-680.
65.Lai, M. F. and Lo, H. K. (2004), “Ferry service network design: Optimal fleet size, routing, and scheduling,” Transportation Research Part A, Vol. 38, pp. 305-328.
66.Lamatsch, A. (1992), “An approach to vehicle scheduling with depot capacity constraints,” in Desrochers, M. and Rousseau, J. M. (eds.), Computer Aided Transit Scheduling, Lecture Notes in Economics and Mathematical System 386, Springer Verlag, Berlin, Heidelberg, pp. 181-195.
67.Lamatsch, A. (1992), “An approach to vehicle scheduling with depot capacity constraints,” in Desrochers, M. and Rousseau, J. M. (eds.), Computer Aided Transit Scheduling, Lecture Notes in Economics and Mathematical System 386, Springer Verlag, Berlin, Heidelberg, pp. 181-195.
68.Laudon, K. C. and Laudon, J. P. (2000), Management Information Systems: Organization and Technology in the Networked Enterprise, 6 ed., Prentice-Hall.
69.Lee, B.C. (1986), “Routing problem with service choices, flight transportation laboratory,” Report R86-4, Massachusetts Institute of Technology, MA.
70.Levin, A. (1969), “Some fleet routing and scheduling problems for air transportation systems,” Flight Transportation Laboratory Report R68-5, Massachusetts Institute of Technology, MA.
71.Levin, A. (1971), “Scheduling and fleet routing models for transportation systems,” Transportation Science, Vol. 5, pp. 232-255.
72.Li, X., Tian, P. and Leung, S.C.H. (2010), “Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm,” International Journal of Production Economics, Vol. 125, pp. 137-145.
73.List, G. F., Wood, B., Nozick, L. K., Turnquist, M. A., Jones, D. A., Kjeldgaard, E. A., and Lawton, C. R. (2003), “Robust optimization for fleet planning under uncertainty,” Transportation Research Part E, Vol. 39, pp. 209-227.
74.Liao, T. Y. and Hu, T. Y. (2011), “An object-oriented evaluation framework for dynamic vehicle routing problems under real-time information, ” Expert Systems with Applications, Vol. 38, pp.12548-12558
75.Mendozaa, J. E., Castanier, B., Guéret, C., Medaglia A. L., and Velasco, N. (2009), “A memetic algorithm for the multi-compartmentvehicle routing problem with stochastic demands, ” Computers & Operations Research, Vol. 37, pp. 1886-1898.
76.Mesquita, M. and Paixao, J. (1992), “Multiple depot vehicle scheduling problem: a new heuristic based on quasi-assignment algorithm,” Computer Aided Transit Scheduling, Lecture Notes in Economics and Mathematical System 386, Springer Verlag, Berlin, Heidelberg, pp. 181-195.
77.Mulvery, J. M. and Ruszczynski, A. (1995), “A new scenario decomposition method for large-scale stochastic optimization,” Operations Research, Vol. 43, No. 3, pp. 477-490.
78.Mulvery, J. M., Vanderbei, R. J., Zenios, S. A. (1995), “Robust optimization of large-scale systems,” Operations Research, Vol. 43, pp. 254-281.
79.Osman, I.H. and Kelly, J.P. (1996), “Meta-heuristics: an overview,” Meta-Heuristics: Theory and Applications, Kluwer Academic Publishers, Boston, London, Dordrecht, pp. 1-21.
80.Powell, W.B. and Ioannis, A.K. (1992), “Shipment routing algorithms with tree constraints,” Transportation Science, Vol. 26, pp. 230-245.
81.Reeves, C.R. (1993), “Improving the efficiency of Tabu search for machine sequencing problems,” Journal of the Operation Research Society, Vol. 44, pp. 375-382.
82.Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E. (2008), “Designing and Managing the Supply Chain”, McGraw-Hill, pp.258-259.
83.SCC, Supply-Chain Council, http://www.supply-chain.org.
84.Shan, Y.S. (1985), “A dynamic mulitcommodity network flow model for real time optimal real freight car management,” Ph.D. Dissertation, Princeton University, Princeton, NJ.
85.Simpson, R.W. (1969), “A review of scheduling and routing model for airline scheduling,” IX AGIFORS Symposium, Broadway, England.
86.Solomon, M. M. (1987), “Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints,” Operations Research, Vol. 35, pp. 254-265.
87.Stancu Minasian, I. M. (1984), Stochastic Programming with Multiple Objective Functions, Editura Academiei, Bucharest.
88.Tang, Ching-Hui, Shangyao Yan, Yu-Zhou Hou (2010), “A dynamic gate reassignment framework for real time flight delays,” 4OR, Vol. 8, 3, pp. 299-318.
89.Teodorovic, D. (1988), Airline operations research, Gordon and Breach Science Publishers, New York.
90.Teodorovic, D. and Guberinic, S. (1984), “Optimal dispatching strategy on an airline network after a schedule perturbation,” European Journal of Operational Research Vol. 15, pp. 178-182.
91.Vickery, S.K., Jayaram, J., Droge, C., and Calantone, R. (2003), “The effects of an integrative supply chain strategy on customer service and financial performance: An analysis of direct versus indirect relationship,”Journal of Operations Management, Vol. 21, pp. 523-539.
92.Wang, D. Z. W. and Lo, H. K. (2008), “Multi-fleet ferry service network design with passenger preferences for differential services,” Transportation Research Part B, Vol. 42, pp. 798-822.
93.Yan, S. and Chen, C. H. (2007), “Coordinated flight scheduling models for allied airlines,” Transportation Research Part C, Vol. 15, pp. 246-264.
94.Yan, S. and Chen, H. L. (2002), “A scheduling model and a solution algorithm for inter-city bus carriers,” Transportation Research Part A, Vol. 36, pp. 805-825.
95.Yan, S. and Lai, W. S. (2007), “An optimal scheduling model for ready mixed concrete supply with overtime considerations,” Automation in Construction, Vol. 16, pp. 734-744.
96.Yan, S. and Tseng, C.H. (2002), “A passenger demand based model for airline flight scheduling and fleet routing,” Computers & Operations Research, Vol. 29, pp. 1559-1581.
97.Yan, S. and Young, H.F. (1996), “A decision support framework for multi-fleet routing and multi-stop flight scheduling,” Transportation Research Part A, Vol. 30, pp. 379-398.
98.Yan, S., Chen, C. H., and Chen, C. K. (2006), “Long-term manpower supply planning for air cargo terminals,” Journal of Transport Management, Vol. 12, pp. 175-181.
99.Yan, S., Chen, S. C., and Chen, C. H. (2006a), “Air cargo fleet routing and timetable setting with multiple on-time demands,” Transportation Research Part E, Vol. 42, pp. 409-430.
100.Yan, S., Chi, C. J., and Tang, C. H. (2006b), “Inter-city bus routing and timetable setting under stochastic demands,” Transportation Research Part A, Vol. 40, pp. 572-586.
101.Yan, S., Lai, W., and Chen, M. (2008b), “Production scheduling and truck dispatching of ready mixed concrete,” Transportation Research, Part E, Vol. 44, pp. 164-179.
102.Yan, S., Tang, C.H., and Fu, T.C. (2008a), “An airline scheduling model and solution algorithms under stochastic demands,” European Journal of Operational Research, Vol. 190, pp. 22-39.
103.Yan, S., Tang, C.H., and Shieh, C.N. (2005), “A simulation framework for evaluating airline temporary schedule adjustments following incidents,” Transportation Planning and Technology, Vol. 28, pp. 189-211.
104.Yan, Shangyao, Chun-Ying Chen and Shih-Chun Lin (2009), “Ship Scheduling and Container Transshipment Planning for Liners in Short Term Operations,” Journal of Marine Science and Technology, Springer Japan, Vol. 14, pp.417-435.
105.Yao, Y. and Dresner, M.E. (2008), “The inventory value of information sharing, continuous replenishment, and vendor-managed inventory”, Transportation Research Part E, Vol. 44, pp. 361-378.
指導教授 顏上堯(Shang-Yao Yan) 審核日期 2011-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明