博碩士論文 973202018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.119.113.79
姓名 方嬿甄(Yen-chen Fang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 考量垂直向效應之多項式摩擦單擺支承之分析與設計
(Analysis and Design of Polynomial Friction Pendulum Isolator with Vertical Effect)
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 以整合力法為分析工具之結構離散輕量化設計效率的探討
★ 最佳化設計於結構被動控制之應用★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究
★ 構件考慮剛域之向量式有限元素分析研究★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究
★ 橋梁多支承輸入近斷層強地動極限破壞分析★ 穩健設計於結構被動控制之應用
★ 二維結構與固體動力分析程式之視窗介面的開發★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動
★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應★ 九二一地震大里奇蹟社區倒塌原因之探討
★ 群樁基礎之最低價設計★ 應用遺傳演算法於群樁基礎低價化設計
★ 應用Discrete Lagrangian Method於群樁基礎低價化設計★ 九二一地震『台中綠色大地社區』 受損原因之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 多項式摩擦單擺支承(Polynomial Friction Pendulum Isolator,PFPI) 為具變頻特性之新型摩擦單擺支承,其曲面函數為一六次方多項式,利用回復勁度遞減之軟化段減緩結構加速度反應,亦可藉由回復勁度遞增之硬化段降低結構位移反應。經研究已證實PFPI可發揮變頻特性,於近域與遠域震波皆發揮良好隔震效果。
若PFPI曲盤硬化段曲面曲率變化急遽,易導致上部結構產生劇烈垂直向運動,改變摩擦面之正向力,因而影響支承摩擦力。然而,前人研究所使用之數值分析法僅考量水平向反應,為了藉由分析模擬含PFPI隔震橋梁之雙向動力反應,本研究考慮水平向與垂直向自由度發展數值分析方法,另考量受水平向及垂直向震波作用及考量橋墩進入非線性行為之結構反應,此外,採用PSO-SA混合式演算法進行多項式摩擦單擺支承與傳統摩擦單擺支承(FPS)最佳參數設計,並比較PFPI與FPS之隔震效益。結果顯示,本研究發展二維數值分析確實可模擬含PFPI隔震橋梁之雙向動力反應,此外,PFPI確實可降低結構受震反應,其減震效能較FPS佳。
摘要(英) The sliding surface of Polynomial Friction Pendulum Isolator (PFPI) is defined by a sixth-order polynomial function. The restoring force possesses a softening section and a hardening section. In the softening section, the restoring stiffness is decreasing in order to mitigate the structural acceleration response, while in the hardening section, the restoring stiffness is increasing so as to reduce the isolator drift. It has been proven that PFPI is not only able to effectively mitigate the structural seismic response induced by either long period near-fault earthquakes or far-field earthquakes.
However, if the PFPI surface curvature increasing rapidly, it may induce severe structural vertical response. For the purpose of simulating horizontal and vertical responses of the bridge with PFPI, the derivation of analysis method considering horizontal and vertical degree of freedom is developed in this study. Discussion on effects of considering vertical ground excitation and the nonlinear behavior of piers. Moreover, optimal parameter study of PFPI and Friction Pendulum System (FPS) and comparison the effectiveness between PFPI and FPS.
The results show that the derivation of analysis method developed in this study does indeed simulates horizontal and vertical structural seismic responses. Moreover, PFPI is more effective to reduce structural seismic response than FPS.
關鍵字(中) ★ 垂直向震波
★ 摩擦單擺支承
★ 變頻式隔震支承
★ 變曲率隔震支承
關鍵字(英) ★ friction pendulum system
★ vertical ground motion.
★ various frequencies seismic isolator
★ variable-curvature seismic isolator
論文目次 目 錄
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅷ
圖目錄 Ⅹ
第一章 緒論..............................................1
1.1研究背景與動機.........................................1
1.2文獻回顧...............................................3
1.2.1近域震波之特性及隔震結構影響......................3
1.2.2摩擦單擺系統......................................4
1.3研究內容............................................6
第二章 多項式摩擦單擺支承................................8
2.1支承力學行為...........................................8
2.2多項式摩擦單擺支承之曲面函數及特性....................12
第三章 滑動支承之一維動力分析...........................18
3.1Newmark-β直接積分法..................................18
3.2數值模型及運動方程式推導..............................20
3.2.1支承靜止階段.....................................21
3.2.2支承滑動階段.....................................23
3.3數值分析實例..........................................26
3.3.1目標橋梁.........................................27
3.3.2支承參數及分析震波...............................27
3.3.3分析結果比較與討論...............................28
3.3.4積分時間步幅之比較...............................28
3.4小結..................................................29
第四章 滑動支承之二維動力分析...........................41
4.1數值模型及運動方程式推導..............................41
4.1.1支承靜止階段.....................................43
4.1.2支承滑動階段.....................................45
4.1.3上部結構騰空運動.................................50
4.2橋墩非線性之運動推導..................................52
4.3數值分析推導之驗證....................................55
4.3.1實驗試體模型及量測儀器配置.......................55
4.3.2實驗輸入震波.....................................56
4.3.3實驗與數值模擬結果之比對與探討...................56
4.4結構受雙向震波之探討..................................59
4.4.1目標橋梁、支承參數與分析震波.....................59
4.4.2分析結果與探討...................................59
4.5小結..................................................61
第五章 FPS與PFPI最佳參數搜尋及分析結果探討.............105
5.1PSO-SA混合式搜尋法...................................105
5.1.1最佳化問題數學模式之建立........................106
5.1.2粒子群演算法....................................107
5.1.3模擬退火法......................................109
5.1.4PSO-SA混合式搜尋法..............................110
5.2支承最佳化設計.......................................111
5.2.1目標橋梁及分析震波..............................111
5.2.2支承最佳參數搜尋之數學模式......................112
5.2.3支承參數範圍....................................113
5.2.4最佳參數搜尋結果與探討..........................113
5.2.4.1考量橋墩線性................................113
5.2.4.2考量橋墩非線性..............................115
5.2.4.3考量雙向震波................................117
5.2.4.4與文獻[19]最佳參數搜尋結果之比較............117
5.3小結.................................................118
第六章 結論與建議.......................................140
6.1結論.................................................140
6.2建議及未來研究方向...................................141
參考文獻................................................143
參考文獻 參考文獻
1. Celebi, M. (1996). “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” The Structural Design of Tall Buildings, 5(2), 95-109.
2. Martelli, A. and Forni, M. (1998). “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294.
3. Kelly, J. M. (1998). “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285.
4. Fujita, T. (1998). “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1( 3), 295-300.
5. Asher, J. W. and et al. (1997). “Performance of Seismically Isolated Structures in the 1994 Northridge and 1995 Kobe Earthquakes.” Proceedings of Structures Congress XV (ASCE), 1128-1132.
6. Basöz, N. I. and Kiremidjian, A. S. (1998). “Evaluation of bridge damage data from the Loma Prieta and Northridge, CA earthquakes.” Technical Report MCEER-98-0004, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1-35.
7. Basöz N. I. and et al. (1999). “Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA Earthquake.” Earthquake Spectra, 15(1), 25-54.
8. Bruneau, M., Wilson, J. C. , and Tremblay, R. (1996). “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.” Canadian Journal of Civil, 23(3), 678-713.
9. Otsuka, H. and et al. (1997). “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.” Journal of Research, Public Works Research Institute, 33.
10. Lee, G. C. and Loh, C. (1999). “Preliminary report from MCEER-NCREE workshop on the 921 Taiwan earthquake.” Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
11. Kawashima, K. (2002). “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake.” Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197.
12. Kosa, K. and et al. (2001). “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.” A Workshop on Seismic Fault-induced Failures, 143-154.
13. Ghobarah, A. and Ali, H. M. (1988). “Seismic performance of highway bridges.” Engineering Structures, 10(3), 157-166.
14. Buckle, I. G. and Mayes, R. L. (1990). “Seismic Isolation History, Application, and Performance—A World View.” Earthquake Spectra, 6(2), 161-201.
15. Naeim, F. and Kelly, J. M. (1999). Design of Seismic Isolated Structures: From Theory to Practice. John Wiley & Sons, inc.
16. Kelly, J. M. (1986). “Aseismic base isolation: review and bibliography.” Soil Dynamics and Earthquake Engineering, 5(3), 202-216.
17. Koh, C. G. and Kelly, J. M. (1988). “A simple mechanical model for elastomeric bearings used in base isolation.” International Journal of Mechanical Sciences, 30(12), 933-943.
18. 王健,盧煉元 “變曲率滑動隔震防制近斷層震波之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2006)。
19. 董佩宜,李姿瑩 “應用多項式摩擦單擺支承之隔震橋梁研究”,國立中央大學土木系碩士論文(2010)。
20. Tsai, Y. B. and Huang, M. W. (2000). “Strong Ground Motion Characteristics of the Chi-Chi, Taiwan Earthquake of September 21,1999.” Earthquake Engineering and Engineering Seismology, 2, 1-21.
21. Loh, C. H., Lee, Z. K., Wu, T. C., and Pen, S. Y. (2000). “Ground motion characteristics of the Chi-Chi earthquake of 21 September 1999.” Earthquake Engineering and Structural Dynamics, 29(6), 867-897.
22. Fukushima, Y., Irikura, K., Uetake, T., and Matsumoto, H. (2000). “Characteristics of observed peak amplitude for strong ground motion from the Hyogoken Nanbu (Kobe) earthquake.” Bulletin of the Seismological Society of America, 90, 545-565.
23. Loh, C. S. (1999). “Interpretation of structural damage in 921 Chi-Chi-earthquake.” International Workshop on 921 Chi-Chi Earthquake Reconnaissance, Dec. 14-17, Taichung, Taiwan.
24. Hall, J. F., Heaton, T. H., Halling, M. W., and Wald, D. J. (1995). “Near-Source Ground Motion and its Effects on Flexible Buildings.” Earthquake Spectra, 11(4), 569-606.
25. Makris N. and Chang, S. P. (1998). “Effect of Damping Mechanisms on the Response of Seismically Isolated Structures.” Report No. PEER-98/06, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.
26. Liao, W. I., Loh, C. H. and Wan, S. (2000). “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake.” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep. 18-20, Taipei, 371-380.
27. 張婉妮,盧煉元 “近斷層震波對滑動隔震結構之影響”,高雄第一科技大學營建工程系碩士論文(2001)。
28. 盧煉元、施明祥、張婉妮 “近斷層震波對滑動式隔震結構之影響評估”,結構工程,第十八卷,第四期,第23-48頁(2003)。
29. Zayas, V. A., Low, S. S., and Mahin, S. A. (1990). “A simple pendulum technique for achieving seismic isolation.” Earthquake Spectra, 6, 317-333.
30. Mokha, A. S., Constantinou, M. C., Reinhorn, A. M., and Zayas, V. A. (1991). “Experimental Study of Friction Pendulum Isolation System.” Journal of Structural Engineering, ASCE, 117(4), 1201-1217.
31. Wang, Y. P., Chung, L. L., Liao, W. H. (1998). “Seismic response analysis of bridges isolated with friction pendulum bearing.” Earthquake Engineering and Structural Dynamics, 27, 1069-1093.
32. Jangid, R. S. and Kelly, J. M. (2001). “Base isolation for near-fault motion.” Earthquake Engineering and Structural Dynamics, 30, 691-707.
33. Rao, P. B. and Jangid, R. S. (2001). “Performance of sliding systems under near-fault motions.” Nuclear Engineering and Design, 203(2-3), 259-272.
34. Pranesh, M. and Sinha, R. (2000). “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603-627.
35. Pranesh, M. and Sinha, R. (2002). “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, ASCE, 128(7), 870-882.
36. Pranesh, M. and Sinha, R. (2004). “Aseismic design of structure–equipment systems using variable frequency pendulum isolator” Nuclear Engineering and Design, 231(2), 129-139.
37. Pranesh, M., and Sinha, R. (2004). “Behavior of structures isolated using VFPI during bear source ground motions.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105.
38. Lu, L. Y., Shih, M. H. , and Wu, C. Y. (2004). “Near-fault seismic isolation using sliding bearings with variable curvatures.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3264.
39. 吳政彥,盧煉元 “變曲率滑動隔震結構之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2004)。
40. Lu, L. Y., Shih, M. H., and Wu, C. Y. (2006). “SLIDING ISOLATION USING VARIABLE FREQUENCY BEARINGS FOR NEAR-FAULT GROUND MOTIONS.” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 164.
41. 盧煉元,施明祥,吳政彥,許朝畯,葉奕麟 “錐形摩擦單擺支承之實驗研究” 第八屆結構工程研討會論文集,南投日月潭,論文編號:H-004 (2006)。
42. Lu, L. Y., Wang, J., and Yeh, S. W. (2007). “Experimental verification of polynomial friction pendulum isolator for near-fault seismic isolation.” The 4th International Structural Engineering and Construction Conference, Melbourne, Australia, 1065-1071.
43. Lu, L. Y., Lee, T. Y., and Yeh, S. W. (2011). “Theory and experimental study for sliding isolators with variable curvature.” Earthquake Engineering and Structural Dynamics, published on-line, DOI: 10.1002/eqe.1106.
44. Lu, L. Y., Lee, T. Y., Yeh, I. L., Chang, H. (2010). “Rocking bearings with variable frequency for near-fault seismic isolation (in Chinese).” Journal of the Chinese Institute of Civil and Hydraulic Engineering, 22(3), 283-298.
45. Newmark, N. M. (1959). “A Method of Computation for Structural Dynamics.” Journal of Engineering Mechanics Division, ASCE, 85(3), 97-94.
46. Chopra, A. K. (1996). Dynamics of Structures: Theory and Applications to Earthquake Engineering, Second Ed., Prentice Hall, Inc.
47. Bouc, R. (1967). “Forced vibrations of mechanical systems with hysteresis.” Proceedings of the Fourth Conference on Non-Linear Oscillations, Prague, Czechoslovakia, 315.
48. Wen, Y. K. (1976). “Method for random vibration of hysteretic systems.” Journal of Engineering Mechanics Division, ASCE, 102(2), 249-263.
49. 莊玟珊,莊德興 “PSO–SA 混合搜尋法與其他結構最佳化設計之應用”,國立中央大學土木工程學系碩士論文(2007)。
50. Deb, K., Gulati, S., and Chakrabarti, S. (1998). “Optimal Truss-Structure Design Using Real-Coded Genetic Algoritms.” Proceedings of the Third Annual Conference, 479−486.
51. Kennedy, J. and Eberhart, R. C. (1995). “Particle swarm optimization.” Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1942-1948.
52. Eberhart, R. C. and Kennedy, J. (1995). “A new optimizer using particle swarm theory.” Proceedings of the Sixth International Symposium on Micro machine and Human Science, Nagoya, Japan, 39-43.
53. Eberhart, R. C. and Shi, Y. H. (2001). “Particle swarm optimization: developments, applications and resources.” Proceedings of IEEE International Conference on Evolutionary Computation, Seoul, Korea, vol. 1, 81-86.
54. Fourie, R. C. and Groenwould, A. A. (2002). “The particle swarm optimization algorithm in size and shape optimization.” Structural and Multidisciplinary Optimization, 23, 259-267.
55. Kirkpatrick, S. ,Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by Simulated Annealing.” Science, 220, No. 4598, 671-680.
56. Corana, A., Maechesi, M.,Martini, C., and Ridella, S. (1987). “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm.” ACM Transactions on Mathematical Software, 13(3), 262-280.
指導教授 莊德興(Der-shin Juang) 審核日期 2011-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明