參考文獻 |
參考文獻
1. Celebi, M. (1996). “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” The Structural Design of Tall Buildings, 5(2), 95-109.
2. Martelli, A. and Forni, M. (1998). “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294.
3. Kelly, J. M. (1998). “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285.
4. Fujita, T. (1998). “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1( 3), 295-300.
5. Asher, J. W. and et al. (1997). “Performance of Seismically Isolated Structures in the 1994 Northridge and 1995 Kobe Earthquakes.” Proceedings of Structures Congress XV (ASCE), 1128-1132.
6. Basöz, N. I. and Kiremidjian, A. S. (1998). “Evaluation of bridge damage data from the Loma Prieta and Northridge, CA earthquakes.” Technical Report MCEER-98-0004, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1-35.
7. Basöz N. I. and et al. (1999). “Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA Earthquake.” Earthquake Spectra, 15(1), 25-54.
8. Bruneau, M., Wilson, J. C. , and Tremblay, R. (1996). “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.” Canadian Journal of Civil, 23(3), 678-713.
9. Otsuka, H. and et al. (1997). “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.” Journal of Research, Public Works Research Institute, 33.
10. Lee, G. C. and Loh, C. (1999). “Preliminary report from MCEER-NCREE workshop on the 921 Taiwan earthquake.” Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
11. Kawashima, K. (2002). “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake.” Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197.
12. Kosa, K. and et al. (2001). “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.” A Workshop on Seismic Fault-induced Failures, 143-154.
13. Ghobarah, A. and Ali, H. M. (1988). “Seismic performance of highway bridges.” Engineering Structures, 10(3), 157-166.
14. Buckle, I. G. and Mayes, R. L. (1990). “Seismic Isolation History, Application, and Performance—A World View.” Earthquake Spectra, 6(2), 161-201.
15. Naeim, F. and Kelly, J. M. (1999). Design of Seismic Isolated Structures: From Theory to Practice. John Wiley & Sons, inc.
16. Kelly, J. M. (1986). “Aseismic base isolation: review and bibliography.” Soil Dynamics and Earthquake Engineering, 5(3), 202-216.
17. Koh, C. G. and Kelly, J. M. (1988). “A simple mechanical model for elastomeric bearings used in base isolation.” International Journal of Mechanical Sciences, 30(12), 933-943.
18. 王健,盧煉元 “變曲率滑動隔震防制近斷層震波之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2006)。
19. 董佩宜,李姿瑩 “應用多項式摩擦單擺支承之隔震橋梁研究”,國立中央大學土木系碩士論文(2010)。
20. Tsai, Y. B. and Huang, M. W. (2000). “Strong Ground Motion Characteristics of the Chi-Chi, Taiwan Earthquake of September 21,1999.” Earthquake Engineering and Engineering Seismology, 2, 1-21.
21. Loh, C. H., Lee, Z. K., Wu, T. C., and Pen, S. Y. (2000). “Ground motion characteristics of the Chi-Chi earthquake of 21 September 1999.” Earthquake Engineering and Structural Dynamics, 29(6), 867-897.
22. Fukushima, Y., Irikura, K., Uetake, T., and Matsumoto, H. (2000). “Characteristics of observed peak amplitude for strong ground motion from the Hyogoken Nanbu (Kobe) earthquake.” Bulletin of the Seismological Society of America, 90, 545-565.
23. Loh, C. S. (1999). “Interpretation of structural damage in 921 Chi-Chi-earthquake.” International Workshop on 921 Chi-Chi Earthquake Reconnaissance, Dec. 14-17, Taichung, Taiwan.
24. Hall, J. F., Heaton, T. H., Halling, M. W., and Wald, D. J. (1995). “Near-Source Ground Motion and its Effects on Flexible Buildings.” Earthquake Spectra, 11(4), 569-606.
25. Makris N. and Chang, S. P. (1998). “Effect of Damping Mechanisms on the Response of Seismically Isolated Structures.” Report No. PEER-98/06, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.
26. Liao, W. I., Loh, C. H. and Wan, S. (2000). “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake.” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep. 18-20, Taipei, 371-380.
27. 張婉妮,盧煉元 “近斷層震波對滑動隔震結構之影響”,高雄第一科技大學營建工程系碩士論文(2001)。
28. 盧煉元、施明祥、張婉妮 “近斷層震波對滑動式隔震結構之影響評估”,結構工程,第十八卷,第四期,第23-48頁(2003)。
29. Zayas, V. A., Low, S. S., and Mahin, S. A. (1990). “A simple pendulum technique for achieving seismic isolation.” Earthquake Spectra, 6, 317-333.
30. Mokha, A. S., Constantinou, M. C., Reinhorn, A. M., and Zayas, V. A. (1991). “Experimental Study of Friction Pendulum Isolation System.” Journal of Structural Engineering, ASCE, 117(4), 1201-1217.
31. Wang, Y. P., Chung, L. L., Liao, W. H. (1998). “Seismic response analysis of bridges isolated with friction pendulum bearing.” Earthquake Engineering and Structural Dynamics, 27, 1069-1093.
32. Jangid, R. S. and Kelly, J. M. (2001). “Base isolation for near-fault motion.” Earthquake Engineering and Structural Dynamics, 30, 691-707.
33. Rao, P. B. and Jangid, R. S. (2001). “Performance of sliding systems under near-fault motions.” Nuclear Engineering and Design, 203(2-3), 259-272.
34. Pranesh, M. and Sinha, R. (2000). “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603-627.
35. Pranesh, M. and Sinha, R. (2002). “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, ASCE, 128(7), 870-882.
36. Pranesh, M. and Sinha, R. (2004). “Aseismic design of structure–equipment systems using variable frequency pendulum isolator” Nuclear Engineering and Design, 231(2), 129-139.
37. Pranesh, M., and Sinha, R. (2004). “Behavior of structures isolated using VFPI during bear source ground motions.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105.
38. Lu, L. Y., Shih, M. H. , and Wu, C. Y. (2004). “Near-fault seismic isolation using sliding bearings with variable curvatures.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3264.
39. 吳政彥,盧煉元 “變曲率滑動隔震結構之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2004)。
40. Lu, L. Y., Shih, M. H., and Wu, C. Y. (2006). “SLIDING ISOLATION USING VARIABLE FREQUENCY BEARINGS FOR NEAR-FAULT GROUND MOTIONS.” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 164.
41. 盧煉元,施明祥,吳政彥,許朝畯,葉奕麟 “錐形摩擦單擺支承之實驗研究” 第八屆結構工程研討會論文集,南投日月潭,論文編號:H-004 (2006)。
42. Lu, L. Y., Wang, J., and Yeh, S. W. (2007). “Experimental verification of polynomial friction pendulum isolator for near-fault seismic isolation.” The 4th International Structural Engineering and Construction Conference, Melbourne, Australia, 1065-1071.
43. Lu, L. Y., Lee, T. Y., and Yeh, S. W. (2011). “Theory and experimental study for sliding isolators with variable curvature.” Earthquake Engineering and Structural Dynamics, published on-line, DOI: 10.1002/eqe.1106.
44. Lu, L. Y., Lee, T. Y., Yeh, I. L., Chang, H. (2010). “Rocking bearings with variable frequency for near-fault seismic isolation (in Chinese).” Journal of the Chinese Institute of Civil and Hydraulic Engineering, 22(3), 283-298.
45. Newmark, N. M. (1959). “A Method of Computation for Structural Dynamics.” Journal of Engineering Mechanics Division, ASCE, 85(3), 97-94.
46. Chopra, A. K. (1996). Dynamics of Structures: Theory and Applications to Earthquake Engineering, Second Ed., Prentice Hall, Inc.
47. Bouc, R. (1967). “Forced vibrations of mechanical systems with hysteresis.” Proceedings of the Fourth Conference on Non-Linear Oscillations, Prague, Czechoslovakia, 315.
48. Wen, Y. K. (1976). “Method for random vibration of hysteretic systems.” Journal of Engineering Mechanics Division, ASCE, 102(2), 249-263.
49. 莊玟珊,莊德興 “PSO–SA 混合搜尋法與其他結構最佳化設計之應用”,國立中央大學土木工程學系碩士論文(2007)。
50. Deb, K., Gulati, S., and Chakrabarti, S. (1998). “Optimal Truss-Structure Design Using Real-Coded Genetic Algoritms.” Proceedings of the Third Annual Conference, 479−486.
51. Kennedy, J. and Eberhart, R. C. (1995). “Particle swarm optimization.” Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1942-1948.
52. Eberhart, R. C. and Kennedy, J. (1995). “A new optimizer using particle swarm theory.” Proceedings of the Sixth International Symposium on Micro machine and Human Science, Nagoya, Japan, 39-43.
53. Eberhart, R. C. and Shi, Y. H. (2001). “Particle swarm optimization: developments, applications and resources.” Proceedings of IEEE International Conference on Evolutionary Computation, Seoul, Korea, vol. 1, 81-86.
54. Fourie, R. C. and Groenwould, A. A. (2002). “The particle swarm optimization algorithm in size and shape optimization.” Structural and Multidisciplinary Optimization, 23, 259-267.
55. Kirkpatrick, S. ,Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by Simulated Annealing.” Science, 220, No. 4598, 671-680.
56. Corana, A., Maechesi, M.,Martini, C., and Ridella, S. (1987). “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm.” ACM Transactions on Mathematical Software, 13(3), 262-280.
|