參考文獻 |
[1] N. Takezawa, N. Iwasa, “Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals”, Catal. Today 36 (1997) 45-56.
[2] N. Iwasa, T. Mayanagi, N. Ogawa, K. Sakata N. Takezawa, “New catalytic functions of Pd–Zn, Pd–Ga, Pd–In, Pt–Zn, Pt–Ga and Pt–In alloys in the conversions of methanol”, Catal. Lett. 54 (1998) 119-123.
[3] S. Patel, K.K. Pant, “Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts”, Chem. Eng. Sci. 62 (2007) 5436-5443.
[4] 黃罡,「甲醇蒸汽重組觸媒設計CuO/ZnO/CeO2/ZrO2/Al2O3」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國97年。
[5] 張承鈞,「甲醇氧化/蒸汽重組複合式反應觸媒之設計CuO/ZnO/CeO2/ZrO2/Al2O3」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國98年。
[6] J. Agrell, H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403.
[7] P.H. Matter, D.J. Braden, U.S. Ozkan, “Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts”, J. Catal. 223 (2004) 340-351.
[8] P.H. Matter, U.S. Ozkan, “Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2”, J. Catal. 234 (2005) 463-475.
[9] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, “Intermediate species on zirconia supported methanol aerogel catalysts V. Adsorption of methanol”, Appl. Catal. A: Gen. 123 (1995) 89-110.
[10] J. Agrell, H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403.
[11] G. Fierro, M.L. Jacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, “Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction”, Appl. Catal. A: Gen. 137 (1996) 327-348.
[12] T. Fujitani, J. Nakamura, “The chemical modification seen in the Cu/ZnO methanol synthesis catalysts”, Appl. Catal. A: Gen. 191 (2000) 111-129.
[13] S. Rabe, F. Vogel, “A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalysts”, Appl. Catal. B: Envi. 84 (2008) 827-834.
[14] R.O. Idem, N.N. Bakhshi, “Production of hydrogen from methanol over promoted coprecipitation Cu-Al catalysts” Ind. Eng. Chem. Res. 34 (1995) 1548-1557.
[15] M.M. Gunter, T. Ressler, R.E. Jentoft, B. Bems, “Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy”, J. Catal. 203 (2001) 133-149.
[16] S. Fukahori, H. Koga, T. Kitaoka, A. Tomoda, R. Suzuki, H. Wariishi, “Hydrogen production from methanol using a SiC fiber-containing paper composite impregnated with Cu/ZnO catalyst”, Appl. Catal. A: Gen. 310 (2006) 138-144.
[17] N. Iwasa, T. Mayanagi, W. Nomura, M. Arai, N. Takezawa, “Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol”, Appl. Catal. A: Gen. 248 (2003) 153-160.
[18] N. Takezawa, N. Iwasa, “Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals”, Catal. Today 36 (1997) 45-56.
[19] Y.H. Chin, Y. Wang, R.A. Dagle, X.S. Li, “Methanol steam reforming over Pd/ZnO: Catalyst preparation and pretreatment studies”, Fuel Process. Technol. 83 (2003) 193-201.
[20] N. Iwasa, N. Takezawa, “New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol”, Top. Catal. Vol. 22, (2003) Nos. 3-4.
[21] P. Bichon, M. Asheim1, A. Jordal, T. Sperle, M. Fathi, A. Holmen, E.A. Blekkan, “Hydrogen from methanol steam-reforming over Cu-based catalysts with and without Pd promotion”, Int. J. Hydrogen Energy 32 (2007) 1799-1805.
[22] T. Conant, A.M. Karim, Va. Lebarbier, Y. Wang, F. Girgsdies, R. Schlogl, A. Datye, “Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol”, J. Catal. 257 (2008) 64-70.
[23] S. Liu, K. Takahashi, H. Eguchi, K. Uematsu, “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials”, Catal. Today 129 (2007) 287-292.
[24] S. Liu, K. Takahashi, K. Uematsu, M. Ayabe, “Hydrogen production by oxidative methanol reforming on Pd/ZnO”, Appl. Catal. A: Gen. 283 (2005) 125-135.
[25] S. Liu, K. Takahashi, K. Fuchigami, K. Uematsu, “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation”, Appl. Catal. A: Gen. 299 (2006) 58-65.
[26] Y.H. Chin, R. Dagle, J. Hu, A.C. Dohnalkova, Y. Wang, “Steam reforming of methanol over highly avtive Pd/ZnO catalyst”, Catal. Today 77 (2002) 79-88.
[27] N. Iwasa, T. Mayanagi, N. Ogawa, K. Sakata, N. Takezawa, “New catalytic functions of Pd–Zn, Pd–Ga, Pd–In, Pt–Zn, Pt–Ga and Pt–In alloys in the conversions of methanol”, Catal. Lett. 54 (1998) 119-123.
[28] N. Iwasa, S. Masuda, N. Ogawa, N. Takezawa, “Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction”, Appl. Catal. A: Gen. 125 (1995) 145-157.
[29] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catlaysts“, J. Catal. 228 (2004) 56-65.
[30] S. Patel, K.K. Pant, “Kinetic modeling of oxidative steam reforming of methanol over Cu/ZnO/CeO2/Al2O3 catalysts”, Appl. Catal. A: Gen. 356 (2009) 189-200.
[31] I.A. Fisher , A.T. Bell, “A mechanistic study of methanol decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2”, J. Catal. 184 (1999) 357-376.
[32] W.H. Cheng, “Reaction and XRD studies on Cu based methanol decomposition catalysts: Role of constituents and development of highactivity multicomponent catalysts”, Appl. Catal. A: Gen. 130 (1995) 13-30.
[33] W.H. Cheng, C.Y. Shiau, T.H. Liu, H.L. Tung, J.F. Lu, C.C. Hsu, “Promotion of Cu/Cr/Mn catalyst by alkali additives in methanol decomposition”, Appl. Catal. A: Gen. 170 (1998) 215-224.
[34] J.C. Brown, E. Gulari, “Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts”, Catal. Commun. 5 (2004) 431-436.
[35] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol – steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network ”, Appl. Catal. A 179 (1999) 21-29.
[36] A.J. Marchi, J.L.G. Fierro, J. Santamaria, A. Monzn, “Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: a study of the activity evolution and reactivation of the catalyst”, Appl. Catal. A: Gen. 142 (1996) 357-386.
[37] E. Santacesaria, S. Carra, “Cinetica dello steam reforming del metanolo”, Riv. Combust. 32 (1978) 227-232.
[38] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 2: Kinetics of methanol decomposition using Girdler G66B catalyst”, Can. J. Chem. 63 (1985) 605-611.
[39] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 3: Kinetics of methanol decomposition using Girdler C18HC catalyst”, Can. J. Chem. 66 (1988) 950-956.
[40] R. Dumpelmann, “Kinetische Untersuchungen des Methanol reforming und der Wassergaskonvertierungsreaktion in einem konsentrationgeregelten Kreislaufreaktor”, Ph.D. Dissertation, Eidgenossischen Technischen Hochschule, Zurich, (1992).
[41] C.J. Jiang, D.L. Trimm, M.S. Wainwright, N.W. Cant, “Kinetic study of steam reforming of methanol of copper-based catalysts”, Appl. Catal. A: Gen. 93 (1993) 245-255.
[42] J.C. Amphlett, R.F. Mann, B.A. Peppley, “The steam-reforming of methanol: mechanism and kinetics compared to the methanol synthesis process”, in: H.E. Curry-Hyde, R.F. Howe (Eds.), Studies in Surface Science and Catalysis, vol. 81, Elsevier, Amsterdam (1994) 409-412, ISBN 0-444-89535-3.
[43] G. Liu, D. Willcox, M. Garland, H.H. Kung, “The role of CO2 in methanol synthesis on Cu-Zn oxide: An isotope labeling study”, J. Catal. 96 (1985) 251-260.
[44] G.C. Chinchen, P.J. Denny, D.G. Parker, M.S. Spencer, D.A. Whan, “Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: Use of 14C-labelled reactions”, Appl. Catal. 30 (1987) 333-338.
[45] N.E. Vanderborgh, B.E. Goodby, T.E. Springer, “Oxygen exchange reactions during methanol steam reforming”, in: Proceedings of the 32nd International Power Sources Symposium (1986) 623-628.
[46] J.P. Breen, J.R.H. Ross,“Methanol reforming for fuel-cell applications: development ofzirconia-containing Cu/Zn/Al catalysts”, Catal. Today 51 (1999) 521-533.
[47] K.C. Waugh, “Methanol synthesis”, Catal. Today 15 (1992) 51-75.
[48] J.K. Lee, J.B. Ko, D.H. Kim, “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor”, Appl. Catal. A: Gen. 278 (2004) 25-35.
[49] H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlogl, R. Schomacker, “CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst”, Appl. Catal. A: Gen. 259 (2004) 83-94.
[50] M. Bowker, R.A. Hadden, H. Houghton, J.N.K. Hyland, K.C. Waugh, “The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts”, J. Catal. 109 (1988) 263-273.
[51] S.G. Neophytides, A.J. Marchi, G.F. Froment, “Methanol synthesis by means of diffuse reflectance infrared Fourier transform and temperature-programmed reaction spectroscopy”, Appl. Catal. A: 86 (1992) 45-64.
[52] G.J. Millar, C.H. Rochester, K.C. Waugh, “Infrared study of methyl formate and formaldehyde adsorption on reduced and oxidised silica-supported copper catalysts”, J. Chem. Soc. Faraday Trans. 87(17) (1991) 2785-2793.
[53] I.E. Wachs, R.J. Madix, “The selective oxidation of CH3OH to H2CO on a copper(110) catalyst”, J. Catal. 53 (1978) 208-227.
[54] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model”, Appl. Catal. A: Gen. 179 (1999) 31-49.
[55] B. Frank, F.C. Jentoft, H. Soerijanto, J. Krohnert, R. Schlogl, R. Schomacker, “Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics”, J. Catal. 246 (2007) 177-192.
[56] J. Skrzypek, J. Sloczynski, S. Ledakowicz, “Methanol synthesis”, ISBN 83-01-11490-8, Polish Scientific Publishers, Warsaw, 1994.
[57] J. Nakamura, I. Nakamura, T. Uchijima, Y. Kanai, T. Watanabe, M. Saito, T. Fujitani, “A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface”, J. Catal. 160 (1996) 65-75.
[58] R.O. Idem, N.N. Bakhshi, “Production of hydrogen from methanol: Experimental studies” Ind. Eng. Chem. Res. 33 (1994) 2056-2065.
[59] T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, “The role of metal oxides in promoting a copper catalyst for methanol synthesis”, Catal. Lett. 25 (1994) 271-276.
[60] H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts”, Appl. Catal. A: Gen. 281 (2005) 69.
[61] H. Oguchi, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts”, Appl. Catal. A: Gen. 293 (2005) 64-70.
[62] M.A.L. Vargas, G. Busca, U. Costantino, “An IR study of methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts”, J. Mol. Catal. A: Chem. 266 (2007) 188–197
[63] T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira,“Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation”, Appl. Catal. A: Gen. 303 (2006) 62-71.
[64] S. Patel, K.K. Pant, “Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts”, Chem. Eng. Sci. 62 (2007) 5436-5443.
[65] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A: Gen. 213 (2001) 47-63.
[66] S. Patel, K.K. Pant, “Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts”, Fuel processing Tech. 88 (2007) 825-832.
[67] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F. Ohashi, “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: catalyst characterization and performance evaluation ”, J. Catal. 194 (2000) 373-384.
[68] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, “Production of hydrogen from oxidative steam reforming of methanol I. Preparation and characterization of Cu/ZnO/Al2O3 catlaysts from a hydrotalcite-like LDH precursor“, J. Catal. 228 (2004) 43-55.
[69] M. Bowker, R.A. Hadden, H. Houghton, J.N.K. Hyland, K.C. Waugh, “The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts”, J. Catal. 109 (1988) 263-273.
[70] W. Ning, H. Shen, H. Liu, “Study of the effect of preparation method on CuO-ZnO-Al2O3 catalyst”, Appl. Catal. A: Gen. 211 (2001) 153.
[71] H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura,S. Imamura, “Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts”, Appl. Catal. A: Gen. 281 (2005) 69-73.
[72] N. Takezawa, N. Iwasa, “Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals”, Catal. Today 36 (1997) 45-56
[73] H. Kobayashi, N. Takezawa, C. Minochi, “Methanol-reforming reaction over copper-containing catalysts—The effects of anions and copper loading in the preparation of the catalysts by kneading method”, J. Catal. 69 (1981) 487-494.
[74] G.C. Shen, S.I. Fujita, S. Matsumoto, N. Takezawa, “Steam reforming of methanol on binary Cu/ZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity”, J. Mol. Catal. A: Chem. 124 (1997) 123-136.
[75] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol – steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network ”, Appl. Catal. A 179 (1999) 21-29.
[76] N. Takezawa, H. Kobayashi, A. Hirose, M. Shimokawabe, K. Takahashi, “Steam reforming of methanol on copper-silica catalysts; effect of copper loading and calcination temperature on the reaction ”, Appl. Catal. 4 (1982) 127-134.
[77] I. Ritzkopf, S. Vukojevic, C. Weidenthaler, J.-D. Grunwaldt, F. Schuth, “Decreased CO production in methanol steam reforming overCu/ZrO2 catalysts prepared by the microemulsion technique”, Appl. Catal. A: Gen. 302 (2006) 215-223.
[78] A. Szizybalski, F. Girgsdies, A. Rabis, Y. Wang, M. Niederberger, T.Ressler, “In situ investigations of structure–activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol”, J. Catal. 233 (2005) 297-307.
[79] H. Purnama, F. Girgsdies, T. Ressler, J.H. Schattka, R.A. Caruso, R. Schomaecker, R. Schloegl, “Activity and Selectivity of a Nanostructured CuO/ZrO2 Catalyst in the Steam Reforming of Methanol”, Catal. Lett. 94 (2004) 61-68.
[80] I. Ritzkopf, C. Kiener, S. Vukojevic, R. Brinkmann, H. Boennemann, F. Schueth, Novel Cu/ZnO and Cu/ZrO2 catalysts for methanol synthesis and steam reforming’’, in: Proceedings of the DGMK-Conference ‘‘Innovation in the Manufacture and Use of Hydrogen’’, DGMK Tagungsbericht 2 (2003) 49–56, ISSN: 1433-9013.
[81] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Effect of dopants on the performance of CuO–CeO2 catalysts in methanol steam reforming”, Appl. Catal. B: Environ. 69 (2007) 226-234.
[82] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Production of hydrogen via combined steam reforming of methanol over CuO–CeO2 catalysts”, Catal. Commun. 5 (2004) 231-235.
[83] W. Shan, Z. Feng, Z. Li, J. Zhang,W. Shen, C. Li, “Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation– combustion methods”, J. Catal. 228 (2004) 206-217.
[84] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Steam reforming of methanol over copper–manganese spinel oxide catalysts”, Catal. Commun. 6 (2005) 497-501.
[85] B. Lindstrom, J. Agrell, L.J. Pettersson, “Combined Reforming of Methanol for Hydrogen Generation over Monolithic” Chem. Eng. J. 93 (2003) 91-101.
[86] J.B. Wang, C.-H. Li, T.J. Huang, “A comparison of oxygen-vacancy effect on activity behaviors of carbon dioxide and steam reforming of methane over supported nickel catalysts”, Catal. Lett. 103 (3/4) (2005) 239-247.
[87] G.C. Chinchen, K.C. Waugh, “The activity and state of the copper surface in methanol synthesis catalysts ”, Appl. Catal. 25 (1986) 101-107.
[88] K. Klier , “Methanol Synthesis”, Adv. Catal. 31 (1982) 243-313.
[89] J.D. Grunwaldt, A.M. Molenbroek, N.Y. Topsoe, H. Topsoe, B.S. Clausen,“In situ investigations of structural changes in Cu/ZnO catalysts”, J. Catal. 194 (2000) 452-460.
[90] N.Y. Topsoe, H. Topsoe, “On the nature of surface structural changes in Cu/ZnO methanol synthesis catalysts”, Top. Catal. 8 (1999) 267-270.
[91] B. Lindstrom, L.J. Pettersson, P.G. Menon, “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles”, Appl. Catal. A: Gen. 234 (2002) 111-125.
[92] E.D. Batyrev, J.C. van den Heuvel, J. Beckers, W.P.A. Jansen, H.L. Castricum, “The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis, J. Catal. 229 (2005) 136-143.
[93] T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, K. Takehira, “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol ”, Appl. Catal. A: Gen. 263 (2004) 249-253.
[94] D. Jingfa, S. Qi, Z. Yulong, C. Songying, W. Dong, “A novel process for preparation of a Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2 + H2: comparison of various preparation methods ”, Appl. Catal. A 139 (1996) 75-85.
[95] Y. Zhang, Q. Sun, J. Deng, D. Wu, S. Chen, “A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties”, Appl. Catal. A 158 (1997) 105-120.
[96] Y. Ma, Q. Sun, D. Wu, W.H. Fan, Y.L. Zhang, J.F. Deng,“A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation”, Appl. Catal. A 171 (1998) 45-55.
[97] Y. Ma, Q. Sun, D. Wu, W.H. Fan, J.F. Deng, “A gel-oxalate co-precipitation process for preparation of Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2+H2: (II) effect of various calcination conditions ”, Appl. Catal. A 177 (1999) 177-184.
[98] J.L. Li, T. Inui, “Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures ”, Appl. Catal. A 137 (1996) 105-117.
[99] L. Alejo, R. Lago, M.A. Pena, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts ”, Appl. Catal. A 162 (1997) 281-297.
[100] S. Velu, K. Suzuki, T. Osaki, “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl‐layered double hydroxides” Catal. Lett. 62 (1999) 159-167.
[101] M.A. Larrubia Vargas ,G. Busca, U. Costantino“An IR study of methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts”, Catal. A: Chem. 266 (2007) 188-197.
[102] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A: Gen. 213 (2001) 47-63.
[103] S. Patel, K.K. Pant, “Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol”, J. Porous Mater. 13 (2006) 373-378.
[104] 王志煒,「甲醇於CuO/ZnO/ZrO2/Al2O3之SRM、OSRM產氫反應研究─ZrO2的影響」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國99年。
[105] S. Patel, K.K. Pant, “Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts”, Chem. Eng. Sci. 62 (2007) 5436-5443.
[106] Y.C. Lin, K. Hohn, S.M. Stagg-Williams, “Hydrogen generation from methanol oxidation on supported Cu and Pt catalysts: Effect od active phases and supports”, Appl. Catal. A: Gen. 327 (2007) 164-172.
[107] C. Cao, K.L. Hohn, “Study of reaction intermediates of methanol decomposition and catalytic partial oxidation on Pt/Al2O3”, Appl. Catal. A: Gen. 354 (2009) 26-32.
[108] S. Sa, H. Silva, L. Brandao, J.M. Sousa, A. Mendes, “Catalysts for methanol steam reforming-A review”, Appl. Catal. B: Environ. 99 (2010) 43-57.
[109] S. Schuyten, S. Guerrero, J.T. Miller, T.shibata, E.E. Wolf, “Characterization and oxidation states of Cu and Pd in Pd-CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation”, Appl. Catal. A: Gen. 352 (2009) 133-144.
|