博碩士論文 983204038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.188.132.71
姓名 許哲銓(Che-chuan Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
(Oxidative steam reforming over noble metal-CuO/ZnO/ZrO2/Al2O3 catalysts)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究
★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應
★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究★ 甲醇蒸汽重組產氫觸媒之設計
★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究
★ CuB超細合金觸媒之製備與催化性質探討★ 負載式CoB非晶態合金觸媒製備與催化性質探討
★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究
★ 負載式CuB合金觸媒製備與催化性質探討★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究
★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究★ 高分子穩定化奈米NiB觸媒之製備與催化性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 複合式甲醇蒸汽重組反應(OSRM),常用觸媒多以銅基觸媒為主,近年有研究報導指出Pt、Pd擔載在ZnO上,應用於甲醇產氫反應具有不錯的活性表現且有較低的CO選擇率,與一般貴金屬行為表現不同。本研究以CuO/ZnO/Al2O3(30/60/10)觸媒為參考,引入不等量Pd、Pt、Ru、Rh並進行OSRM反應活性測試,另以Me/Al2O3及Me/ZnO/Al2O3(Me=Pd、Pt、Ru、Rh)觸媒於SRM及OSRM反應條件下進行反應測試,釐清貴金屬所扮演的角色。再於活性最佳之觸媒中引入CeO2及ZrO2,了解促進劑對貴金屬-CuO/ZnO/Al2O3觸媒於OSRM反應的影響,以設計出具有高活性及高穩定性的產氫觸媒。
以共沉澱法引入貴金屬於CuO/ZnO/Al2O3(30/60/10)觸媒中可大幅促進觸媒於OSRM反應活性;以臨濕含浸法引入貴金屬於觸媒中其促進效果無法彰顯,甚至抑制觸媒活性,也增加產物中CO濃度。單獨貴金屬觸媒於SRM及OSRM反應條件下仍進行MD反應,ZnO存在時則以SRM及OSRM反應為主,且進料中含有O2時,貴金屬觸媒會進行CO oxidation反應。添加貴金屬不影響觸媒比表面積及整體分散性,但可有效提升觸媒還原能力,也促進甲醇解離吸附及反應中間物脫氫,加速反應的進行,適量添加1%Pd、Pt、Ru、Rh皆可提升CuO/ZnO/Al2O3觸媒於OSRM反應活性,Pt促進效果最佳,Pd次之。Pd、Ru、Rh會增加產物中CO的濃度,Pt則不影響觸媒CO選擇率。於最佳比例觸媒中引入CeO2、ZrO2雖增加觸媒比表面積及整體分散性,但削弱Pd、Pt對觸媒活性之促進效果。
1%Pt-CuO/ZnO/Al2O3(30/60/10)觸媒反應活性遠優於商用觸媒,並有較低的CO選擇率,觸媒穩定性也有不錯的表現,為極具發展潛力之產氫觸媒。
摘要(英) The oxidative steam reforming of methanol (OSRM) was usually studied over Cu-based catalysts. Recently, numerous researchers indicate that Pt and Pd over ZnO have great activity and low CO concentration for hydrogen production by methanol. Their behavior is different from normal noble metals′. In this research, commercial catalysts G66B (Nisson-Gridler) with weight ratio of 30/60/10 (CuO/ZnO/Al2O3) is used as a starting reference and introduce distinct proportions of Pd,Pt,Ru and Rh which is prepared by co-precipitation method for OSRM activity test. Besides we use Me/Al2O3 and Me/ZnO/Al2O3 catalysts for SRM and OSRM condition to figure out what role noble metals play in catalysts. Finally we introduce CeO2 and ZrO2 to the catalysts having best activity in order to find out how promoters effect catalysts then design the best Me- CuO/ZnO/Al2O3 catalyst for OSRM.
Catalysts activity are much enhanced with introducing noble metals by co-precipitation method. Noble metals would carry out MD but noble metal over ZnO lead SRM and OSRM for SRM and OSRM condition. Further, noble metal catalyst carry out CO oxidation when input include O2. Catalyst surface area and dispersion have no difference after introducing noble metal, but reduction ability, methanol dissociation and adsorption and H2 dissociation of reaction intermedium are largely enhanced so that speed up reaction proceeding. Although introducing CeO2 and ZrO2 to catalyst increase surface area and dispersion but weaken the Pd and Pt enhancement. 1%Pt-CuO/ZnO/Al2O3(30/60/10) catalyst have well activity and stability and low CO selectivity which is very potential catalyst for H2 production.
關鍵字(中) ★ 氧化鋯
★ 甲醇蒸汽重組複合式反應
★ 貴金屬
★ 銅觸媒
★ 氧化鈰
關鍵字(英) ★ Oxidative Steam Reforming of Methanol(OSRM)、Copp
論文目次 摘 要 i
Abstract ii
目 錄 iii
圖 目 錄 v
表 目 錄 vii
第一章 緒論 1
第二章 文獻回顧 3
2-1 甲醇產氫反應 4
2-2 甲醇產氫的反應路徑 5
2-2-1 甲醇分解反應(MD) 5
2-2-2 甲醇蒸汽重組反應(SRM) 7
2-2-3 複合式甲醇蒸汽重組反應(OSRM) 17
2-3 甲醇產氫觸媒 22
2-3-1 銅基觸媒 23
第三章 實驗方法與設備 36
3-1 貴金屬-CuO/ZnO/ZrO2/Al2O3觸媒之製備 36
3-2 觸媒性質鑑定 38
3-2-1 比表面積測定(BET) 38
3-2-2 X-射線繞射分析(XRD) 39
3-2-3 氫-程溫還原(H2-TPR) 39
3-2-4 原位漫反射傅利葉紅外線光譜儀(In situ DR-FTIR) 42
3-3 複合式甲醇蒸汽重組反應活性測試 43
3-4 轉化率與選擇率之計算 47
3-5 實驗藥品及氣體 47
第四章 結果與討論 49
4-1 貴金屬添加方法對CuO/ZnO/Al2O3(30/60/10)觸媒的影響 49
4-2 貴金屬對CuO/ZnO/Al2O3(30/60/10)觸媒的影響 51
4-2-1 Pd的影響 51
4-2-2 Pt的影響 60
4-2-3 Ru負載量的影響 69
4-2-4 Rh負載量的影響 74
4-3 添加ZrO2對貴金屬-CuO/ZnO/Al2O3(30/60/10)觸媒的影響 80
4-4 添加CeO2對貴金屬-CuO/ZnO/Al2O3(30/60/10)觸媒的影響 85
4-5 觸媒穩定性測試 87
第五章 結論 89
總 結 90
參考文獻 91
參考文獻 [1] N. Takezawa, N. Iwasa, “Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals”, Catal. Today 36 (1997) 45-56.
[2] N. Iwasa, T. Mayanagi, N. Ogawa, K. Sakata N. Takezawa, “New catalytic functions of Pd–Zn, Pd–Ga, Pd–In, Pt–Zn, Pt–Ga and Pt–In alloys in the conversions of methanol”, Catal. Lett. 54 (1998) 119-123.
[3] S. Patel, K.K. Pant, “Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts”, Chem. Eng. Sci. 62 (2007) 5436-5443.
[4] 黃罡,「甲醇蒸汽重組觸媒設計CuO/ZnO/CeO2/ZrO2/Al2O3」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國97年。
[5] 張承鈞,「甲醇氧化/蒸汽重組複合式反應觸媒之設計CuO/ZnO/CeO2/ZrO2/Al2O3」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國98年。
[6] J. Agrell, H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403.
[7] P.H. Matter, D.J. Braden, U.S. Ozkan, “Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts”, J. Catal. 223 (2004) 340-351.
[8] P.H. Matter, U.S. Ozkan, “Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2”, J. Catal. 234 (2005) 463-475.
[9] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, “Intermediate species on zirconia supported methanol aerogel catalysts V. Adsorption of methanol”, Appl. Catal. A: Gen. 123 (1995) 89-110.
[10] J. Agrell, H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403.
[11] G. Fierro, M.L. Jacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, “Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction”, Appl. Catal. A: Gen. 137 (1996) 327-348.
[12] T. Fujitani, J. Nakamura, “The chemical modification seen in the Cu/ZnO methanol synthesis catalysts”, Appl. Catal. A: Gen. 191 (2000) 111-129.
[13] S. Rabe, F. Vogel, “A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalysts”, Appl. Catal. B: Envi. 84 (2008) 827-834.
[14] R.O. Idem, N.N. Bakhshi, “Production of hydrogen from methanol over promoted coprecipitation Cu-Al catalysts” Ind. Eng. Chem. Res. 34 (1995) 1548-1557.
[15] M.M. Gunter, T. Ressler, R.E. Jentoft, B. Bems, “Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy”, J. Catal. 203 (2001) 133-149.
[16] S. Fukahori, H. Koga, T. Kitaoka, A. Tomoda, R. Suzuki, H. Wariishi, “Hydrogen production from methanol using a SiC fiber-containing paper composite impregnated with Cu/ZnO catalyst”, Appl. Catal. A: Gen. 310 (2006) 138-144.
[17] N. Iwasa, T. Mayanagi, W. Nomura, M. Arai, N. Takezawa, “Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol”, Appl. Catal. A: Gen. 248 (2003) 153-160.
[18] N. Takezawa, N. Iwasa, “Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals”, Catal. Today 36 (1997) 45-56.
[19] Y.H. Chin, Y. Wang, R.A. Dagle, X.S. Li, “Methanol steam reforming over Pd/ZnO: Catalyst preparation and pretreatment studies”, Fuel Process. Technol. 83 (2003) 193-201.
[20] N. Iwasa, N. Takezawa, “New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol”, Top. Catal. Vol. 22, (2003) Nos. 3-4.
[21] P. Bichon, M. Asheim1, A. Jordal, T. Sperle, M. Fathi, A. Holmen, E.A. Blekkan, “Hydrogen from methanol steam-reforming over Cu-based catalysts with and without Pd promotion”, Int. J. Hydrogen Energy 32 (2007) 1799-1805.
[22] T. Conant, A.M. Karim, Va. Lebarbier, Y. Wang, F. Girgsdies, R. Schlogl, A. Datye, “Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol”, J. Catal. 257 (2008) 64-70.
[23] S. Liu, K. Takahashi, H. Eguchi, K. Uematsu, “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials”, Catal. Today 129 (2007) 287-292.
[24] S. Liu, K. Takahashi, K. Uematsu, M. Ayabe, “Hydrogen production by oxidative methanol reforming on Pd/ZnO”, Appl. Catal. A: Gen. 283 (2005) 125-135.
[25] S. Liu, K. Takahashi, K. Fuchigami, K. Uematsu, “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation”, Appl. Catal. A: Gen. 299 (2006) 58-65.
[26] Y.H. Chin, R. Dagle, J. Hu, A.C. Dohnalkova, Y. Wang, “Steam reforming of methanol over highly avtive Pd/ZnO catalyst”, Catal. Today 77 (2002) 79-88.
[27] N. Iwasa, T. Mayanagi, N. Ogawa, K. Sakata, N. Takezawa, “New catalytic functions of Pd–Zn, Pd–Ga, Pd–In, Pt–Zn, Pt–Ga and Pt–In alloys in the conversions of methanol”, Catal. Lett. 54 (1998) 119-123.
[28] N. Iwasa, S. Masuda, N. Ogawa, N. Takezawa, “Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction”, Appl. Catal. A: Gen. 125 (1995) 145-157.
[29] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catlaysts“, J. Catal. 228 (2004) 56-65.
[30] S. Patel, K.K. Pant, “Kinetic modeling of oxidative steam reforming of methanol over Cu/ZnO/CeO2/Al2O3 catalysts”, Appl. Catal. A: Gen. 356 (2009) 189-200.
[31] I.A. Fisher , A.T. Bell, “A mechanistic study of methanol decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2”, J. Catal. 184 (1999) 357-376.
[32] W.H. Cheng, “Reaction and XRD studies on Cu based methanol decomposition catalysts: Role of constituents and development of highactivity multicomponent catalysts”, Appl. Catal. A: Gen. 130 (1995) 13-30.
[33] W.H. Cheng, C.Y. Shiau, T.H. Liu, H.L. Tung, J.F. Lu, C.C. Hsu, “Promotion of Cu/Cr/Mn catalyst by alkali additives in methanol decomposition”, Appl. Catal. A: Gen. 170 (1998) 215-224.
[34] J.C. Brown, E. Gulari, “Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts”, Catal. Commun. 5 (2004) 431-436.
[35] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol – steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network ”, Appl. Catal. A 179 (1999) 21-29.
[36] A.J. Marchi, J.L.G. Fierro, J. Santamaria, A. Monzn, “Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: a study of the activity evolution and reactivation of the catalyst”, Appl. Catal. A: Gen. 142 (1996) 357-386.
[37] E. Santacesaria, S. Carra, “Cinetica dello steam reforming del metanolo”, Riv. Combust. 32 (1978) 227-232.
[38] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 2: Kinetics of methanol decomposition using Girdler G66B catalyst”, Can. J. Chem. 63 (1985) 605-611.
[39] J.C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, “Hydrogen production by the catalytic steam reforming of methanol. Part 3: Kinetics of methanol decomposition using Girdler C18HC catalyst”, Can. J. Chem. 66 (1988) 950-956.
[40] R. Dumpelmann, “Kinetische Untersuchungen des Methanol reforming und der Wassergaskonvertierungsreaktion in einem konsentrationgeregelten Kreislaufreaktor”, Ph.D. Dissertation, Eidgenossischen Technischen Hochschule, Zurich, (1992).
[41] C.J. Jiang, D.L. Trimm, M.S. Wainwright, N.W. Cant, “Kinetic study of steam reforming of methanol of copper-based catalysts”, Appl. Catal. A: Gen. 93 (1993) 245-255.
[42] J.C. Amphlett, R.F. Mann, B.A. Peppley, “The steam-reforming of methanol: mechanism and kinetics compared to the methanol synthesis process”, in: H.E. Curry-Hyde, R.F. Howe (Eds.), Studies in Surface Science and Catalysis, vol. 81, Elsevier, Amsterdam (1994) 409-412, ISBN 0-444-89535-3.
[43] G. Liu, D. Willcox, M. Garland, H.H. Kung, “The role of CO2 in methanol synthesis on Cu-Zn oxide: An isotope labeling study”, J. Catal. 96 (1985) 251-260.
[44] G.C. Chinchen, P.J. Denny, D.G. Parker, M.S. Spencer, D.A. Whan, “Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: Use of 14C-labelled reactions”, Appl. Catal. 30 (1987) 333-338.
[45] N.E. Vanderborgh, B.E. Goodby, T.E. Springer, “Oxygen exchange reactions during methanol steam reforming”, in: Proceedings of the 32nd International Power Sources Symposium (1986) 623-628.
[46] J.P. Breen, J.R.H. Ross,“Methanol reforming for fuel-cell applications: development ofzirconia-containing Cu/Zn/Al catalysts”, Catal. Today 51 (1999) 521-533.
[47] K.C. Waugh, “Methanol synthesis”, Catal. Today 15 (1992) 51-75.
[48] J.K. Lee, J.B. Ko, D.H. Kim, “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor”, Appl. Catal. A: Gen. 278 (2004) 25-35.
[49] H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlogl, R. Schomacker, “CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst”, Appl. Catal. A: Gen. 259 (2004) 83-94.
[50] M. Bowker, R.A. Hadden, H. Houghton, J.N.K. Hyland, K.C. Waugh, “The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts”, J. Catal. 109 (1988) 263-273.
[51] S.G. Neophytides, A.J. Marchi, G.F. Froment, “Methanol synthesis by means of diffuse reflectance infrared Fourier transform and temperature-programmed reaction spectroscopy”, Appl. Catal. A: 86 (1992) 45-64.
[52] G.J. Millar, C.H. Rochester, K.C. Waugh, “Infrared study of methyl formate and formaldehyde adsorption on reduced and oxidised silica-supported copper catalysts”, J. Chem. Soc. Faraday Trans. 87(17) (1991) 2785-2793.
[53] I.E. Wachs, R.J. Madix, “The selective oxidation of CH3OH to H2CO on a copper(110) catalyst”, J. Catal. 53 (1978) 208-227.
[54] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model”, Appl. Catal. A: Gen. 179 (1999) 31-49.
[55] B. Frank, F.C. Jentoft, H. Soerijanto, J. Krohnert, R. Schlogl, R. Schomacker, “Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics”, J. Catal. 246 (2007) 177-192.
[56] J. Skrzypek, J. Sloczynski, S. Ledakowicz, “Methanol synthesis”, ISBN 83-01-11490-8, Polish Scientific Publishers, Warsaw, 1994.
[57] J. Nakamura, I. Nakamura, T. Uchijima, Y. Kanai, T. Watanabe, M. Saito, T. Fujitani, “A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface”, J. Catal. 160 (1996) 65-75.
[58] R.O. Idem, N.N. Bakhshi, “Production of hydrogen from methanol: Experimental studies” Ind. Eng. Chem. Res. 33 (1994) 2056-2065.
[59] T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, “The role of metal oxides in promoting a copper catalyst for methanol synthesis”, Catal. Lett. 25 (1994) 271-276.
[60] H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts”, Appl. Catal. A: Gen. 281 (2005) 69.
[61] H. Oguchi, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts”, Appl. Catal. A: Gen. 293 (2005) 64-70.
[62] M.A.L. Vargas, G. Busca, U. Costantino, “An IR study of methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts”, J. Mol. Catal. A: Chem. 266 (2007) 188–197
[63] T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira,“Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation”, Appl. Catal. A: Gen. 303 (2006) 62-71.
[64] S. Patel, K.K. Pant, “Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts”, Chem. Eng. Sci. 62 (2007) 5436-5443.
[65] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A: Gen. 213 (2001) 47-63.
[66] S. Patel, K.K. Pant, “Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts”, Fuel processing Tech. 88 (2007) 825-832.
[67] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F. Ohashi, “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: catalyst characterization and performance evaluation ”, J. Catal. 194 (2000) 373-384.
[68] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, “Production of hydrogen from oxidative steam reforming of methanol I. Preparation and characterization of Cu/ZnO/Al2O3 catlaysts from a hydrotalcite-like LDH precursor“, J. Catal. 228 (2004) 43-55.
[69] M. Bowker, R.A. Hadden, H. Houghton, J.N.K. Hyland, K.C. Waugh, “The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts”, J. Catal. 109 (1988) 263-273.
[70] W. Ning, H. Shen, H. Liu, “Study of the effect of preparation method on CuO-ZnO-Al2O3 catalyst”, Appl. Catal. A: Gen. 211 (2001) 153.
[71] H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura,S. Imamura, “Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts”, Appl. Catal. A: Gen. 281 (2005) 69-73.
[72] N. Takezawa, N. Iwasa, “Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals”, Catal. Today 36 (1997) 45-56
[73] H. Kobayashi, N. Takezawa, C. Minochi, “Methanol-reforming reaction over copper-containing catalysts—The effects of anions and copper loading in the preparation of the catalysts by kneading method”, J. Catal. 69 (1981) 487-494.
[74] G.C. Shen, S.I. Fujita, S. Matsumoto, N. Takezawa, “Steam reforming of methanol on binary Cu/ZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity”, J. Mol. Catal. A: Chem. 124 (1997) 123-136.
[75] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol – steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network ”, Appl. Catal. A 179 (1999) 21-29.
[76] N. Takezawa, H. Kobayashi, A. Hirose, M. Shimokawabe, K. Takahashi, “Steam reforming of methanol on copper-silica catalysts; effect of copper loading and calcination temperature on the reaction ”, Appl. Catal. 4 (1982) 127-134.
[77] I. Ritzkopf, S. Vukojevic, C. Weidenthaler, J.-D. Grunwaldt, F. Schuth, “Decreased CO production in methanol steam reforming overCu/ZrO2 catalysts prepared by the microemulsion technique”, Appl. Catal. A: Gen. 302 (2006) 215-223.
[78] A. Szizybalski, F. Girgsdies, A. Rabis, Y. Wang, M. Niederberger, T.Ressler, “In situ investigations of structure–activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol”, J. Catal. 233 (2005) 297-307.
[79] H. Purnama, F. Girgsdies, T. Ressler, J.H. Schattka, R.A. Caruso, R. Schomaecker, R. Schloegl, “Activity and Selectivity of a Nanostructured CuO/ZrO2 Catalyst in the Steam Reforming of Methanol”, Catal. Lett. 94 (2004) 61-68.
[80] I. Ritzkopf, C. Kiener, S. Vukojevic, R. Brinkmann, H. Boennemann, F. Schueth, Novel Cu/ZnO and Cu/ZrO2 catalysts for methanol synthesis and steam reforming’’, in: Proceedings of the DGMK-Conference ‘‘Innovation in the Manufacture and Use of Hydrogen’’, DGMK Tagungsbericht 2 (2003) 49–56, ISSN: 1433-9013.
[81] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Effect of dopants on the performance of CuO–CeO2 catalysts in methanol steam reforming”, Appl. Catal. B: Environ. 69 (2007) 226-234.
[82] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Production of hydrogen via combined steam reforming of methanol over CuO–CeO2 catalysts”, Catal. Commun. 5 (2004) 231-235.
[83] W. Shan, Z. Feng, Z. Li, J. Zhang,W. Shen, C. Li, “Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation– combustion methods”, J. Catal. 228 (2004) 206-217.
[84] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Steam reforming of methanol over copper–manganese spinel oxide catalysts”, Catal. Commun. 6 (2005) 497-501.
[85] B. Lindstrom, J. Agrell, L.J. Pettersson, “Combined Reforming of Methanol for Hydrogen Generation over Monolithic” Chem. Eng. J. 93 (2003) 91-101.
[86] J.B. Wang, C.-H. Li, T.J. Huang, “A comparison of oxygen-vacancy effect on activity behaviors of carbon dioxide and steam reforming of methane over supported nickel catalysts”, Catal. Lett. 103 (3/4) (2005) 239-247.
[87] G.C. Chinchen, K.C. Waugh, “The activity and state of the copper surface in methanol synthesis catalysts ”, Appl. Catal. 25 (1986) 101-107.
[88] K. Klier , “Methanol Synthesis”, Adv. Catal. 31 (1982) 243-313.
[89] J.D. Grunwaldt, A.M. Molenbroek, N.Y. Topsoe, H. Topsoe, B.S. Clausen,“In situ investigations of structural changes in Cu/ZnO catalysts”, J. Catal. 194 (2000) 452-460.
[90] N.Y. Topsoe, H. Topsoe, “On the nature of surface structural changes in Cu/ZnO methanol synthesis catalysts”, Top. Catal. 8 (1999) 267-270.
[91] B. Lindstrom, L.J. Pettersson, P.G. Menon, “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles”, Appl. Catal. A: Gen. 234 (2002) 111-125.
[92] E.D. Batyrev, J.C. van den Heuvel, J. Beckers, W.P.A. Jansen, H.L. Castricum, “The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis, J. Catal. 229 (2005) 136-143.
[93] T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, K. Takehira, “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol ”, Appl. Catal. A: Gen. 263 (2004) 249-253.
[94] D. Jingfa, S. Qi, Z. Yulong, C. Songying, W. Dong, “A novel process for preparation of a Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2 + H2: comparison of various preparation methods ”, Appl. Catal. A 139 (1996) 75-85.
[95] Y. Zhang, Q. Sun, J. Deng, D. Wu, S. Chen, “A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties”, Appl. Catal. A 158 (1997) 105-120.
[96] Y. Ma, Q. Sun, D. Wu, W.H. Fan, Y.L. Zhang, J.F. Deng,“A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation”, Appl. Catal. A 171 (1998) 45-55.
[97] Y. Ma, Q. Sun, D. Wu, W.H. Fan, J.F. Deng, “A gel-oxalate co-precipitation process for preparation of Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2+H2: (II) effect of various calcination conditions ”, Appl. Catal. A 177 (1999) 177-184.
[98] J.L. Li, T. Inui, “Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures ”, Appl. Catal. A 137 (1996) 105-117.
[99] L. Alejo, R. Lago, M.A. Pena, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts ”, Appl. Catal. A 162 (1997) 281-297.
[100] S. Velu, K. Suzuki, T. Osaki, “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl‐layered double hydroxides” Catal. Lett. 62 (1999) 159-167.
[101] M.A. Larrubia Vargas ,G. Busca, U. Costantino“An IR study of methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts”, Catal. A: Chem. 266 (2007) 188-197.
[102] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Appl. Catal. A: Gen. 213 (2001) 47-63.
[103] S. Patel, K.K. Pant, “Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol”, J. Porous Mater. 13 (2006) 373-378.
[104] 王志煒,「甲醇於CuO/ZnO/ZrO2/Al2O3之SRM、OSRM產氫反應研究─ZrO2的影響」,國立中央大學,化學工程與材料工程研究所,碩士論文,民國99年。
[105] S. Patel, K.K. Pant, “Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts”, Chem. Eng. Sci. 62 (2007) 5436-5443.
[106] Y.C. Lin, K. Hohn, S.M. Stagg-Williams, “Hydrogen generation from methanol oxidation on supported Cu and Pt catalysts: Effect od active phases and supports”, Appl. Catal. A: Gen. 327 (2007) 164-172.
[107] C. Cao, K.L. Hohn, “Study of reaction intermediates of methanol decomposition and catalytic partial oxidation on Pt/Al2O3”, Appl. Catal. A: Gen. 354 (2009) 26-32.
[108] S. Sa, H. Silva, L. Brandao, J.M. Sousa, A. Mendes, “Catalysts for methanol steam reforming-A review”, Appl. Catal. B: Environ. 99 (2010) 43-57.
[109] S. Schuyten, S. Guerrero, J.T. Miller, T.shibata, E.E. Wolf, “Characterization and oxidation states of Cu and Pd in Pd-CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation”, Appl. Catal. A: Gen. 352 (2009) 133-144.
指導教授 陳吟足、廖炳傑
(Yin-Zu Chen、Biing-Jye Liaw)
審核日期 2011-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明