參考文獻 |
[1] M. Haruta, N. Yamada, T. Kobayashi, S. lijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal. 115 (1989) 301-309.
[2] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4, J. Catal. 144 (1993) 175-192.
[3] M. Haruta, When gold is not noble: catalysis by nanoparticles, The Chemical Record 3 (2003) 75-87.
[4] A. Schulz, M. Hargittai, Structural variations and bonding in gold halides: a quantum chemical study of monomeric and dimeric gold monohalide and gold trihalide molecules, AuX, Au2X2, AuX3, and Au2X6 (X=F, Cl, Br, I), Chem. Eur. J. 7 (17) (2001) 3657-3670.
[5] M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, CATTECH 6 (3) (2002) 102-115.
[6] C.T. Chang, B.J. Liaw, C.T. Huang, Y.Z. Chen, Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation, Appl. Catal. A: Gen. 332 (2007) 216-224.
[7]
游焜竣, Au/MgxAlO-hydrotalcite 觸媒於α,β-不飽和醛選擇性氫化反應之研究, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2008).
[8]
吳佩珊, Au觸媒於α,β-不飽和醛選擇性氫化反應之擔體效應研究, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2009).
[9] A.G. Sault, R.J. Madix, C.T. Campbell, Adsorption of oxygen and hydrogen on Au(110)-(1 × 2), Surf. Sci. 169 (1986) 347-356.
[10] Ph. Buffet, J.P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 13 (1976) 2287-2298.
[11] G.C. Bond, P.A. Sermon, Gold catalysts for olefin hydrogenateon, Gold Bull. 6 (1976) 102-105.
[12] W.C. Li, M. Comotti, F. Schüth, Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation, J. Catal. 237 (2006) 190-196.
[13] H.Y. Tsai, Y.D. Lin, W.T. Fu, S.D. Lin, The activation of supported Au catalysts prepared by impregnation, Gold Bull. 40 (2007) 184-191.
[14] F. Moreau, G.C. Bond, A.O. Taylor, Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents, J. Catal. 231 (2005) 105-114.
[15] S. Ivanova, V. Pitchon, A new preparation method for the formation of gold nanoparticles on an oxide support, Appl. Catal. A: Gen. 267 (2004) 191-201.
[16] V. Ponec, G.C. Bond, Catalysis by metals and alloys, Elsevier, Amsterdam, 1996.
[17] M. Haruta, Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications, Gold Bull. 37 (2004) 27-36.
[18] F. Cavani, F. Trifiro, A. Vacari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today 11 (1911) 173-301.
[19] D. Tichit , M.H. Lhouty, A. Guida, B.H. Chiche, F. Figueras, A. Auroux, D. Bartalini, E. Farronn, Textural properties and catalytic activity of hydrotalcite, J. Catal. 151 (1995) 50-59.
[20] W.T. Reichle, Catalytic reactions by thermally activated anionic clay minerals, J. Catal. 94 (1985) 547-577.
[21] A.L. McKenzie , C.T. Fishel, T.J. Davis, Investigation of the surface structure and basic properties of calcined hydrotalcite, J. Catal. 138 (1992) 547-561.
[22] A. Corma, V. Fornes, F. Rey, Hydrotalcite as base catalyst: influence of the chemical composition and synthesis condition on the dehydrogenation of isopropanol, J. Catal. 148 (1994) 205-212.
[23] A. Corma, V. Fornes, R.M. Martin-Aranda, F. Rey, Determination of base properties of hydrotalcite: condensation of benzaldehyde with ethyl acetoacetate, J. Catal. 134 (1992) 58-65.
[24]
[25]
廖志偉, 一步合成甲基異丁基酮之多功能觸媒研究-Pd(Ni)/ hydrotalcite, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
W. Yang, Y. Kim, P.K.T. Liu, M. Sahimi, T.T. Tsotsis, A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide, Chem. Eng. Sci. 57 (2002) 2945-2953.
[26] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Krönert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paal, R. Schlögl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism, J. Catal. 237 (2006) 17-28.
[27] Y. Huang, A. Wang, L. Li, X. Wang, D. Su, T. Zhang, Ir-in-ceria : A highly selective catalyst for preferential CO oxidation, J. Catal. 255 (2008) 144-152.
[28] J. Zhang, Y. Jin, C. Li, Y. Shen, L. Han, Z. Hu, X. Di, Z. Liu, Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation, Appl. Catal. B: Environ. 91 (2009) 11-20.
[29] J. Meilin, B. Haifeng, Zhaorigetu, S. Yuenain, L. Yanfeng, Preparation of Au/CeO2 catalyst and its catalytic performance for HCHO oxidation, J. Rare Earths 26 (2008) 528-531.
[30] R. Pillai, S. Deevi, Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide, Appl. Catal. A: Gen. 299 (2006) 266-273.
[31] M.P. Casaletto, A. Longo, A.M. Venezia, A. Martorana, A. Prestianni, Metal-support and preparation influence on the structural and electronic properties of gold catalysts, Appl. Catal. A: Gen. 302 (2006) 309-316.
[32] P. Sangeetha, Y.W. Chen, Preferential oxidation of CO in H2 stream on Au/CeO2-TiO2 catalysts, Int. J. hydrogen energy 34 (2009) 7342-7347.
[33] P. Lakshmanan, L. Delannoy, V. Richard, C.M. thivier, C. Potvin, C. Louis, Total oxidation of propene over Au/CeO2-Al2O3 catalysts: Influence of the CeO2 loading and the activation treatment, Appl. Catal. B: Environ. 96 (2010) 117-125.
[34] 維基百科, http://zh.wikipedia.org/zh-tw/TiO2 (2010).
[35] M.A. Vannice, B. Sen, Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum, J. Catal. 115 (1989) 65-78.
[36] B. Campo, M. Volpe, S. Ivanova, R. Touroude, Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts, J. Catal. 242 (2006) 162-171.
[37] R. Zanella, C. Louis, S. Giorgio, R. Touroude, Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism, J. Catal. 223 (2004) 328-339.
[38] J. Guzman, S. Kuba, J.C. Fierro-Gonzalez, B.C. Gates, Formation of gold clusters on TiO2 from adsorbed Au(CH3)2(C5H7O2): characterization by X-ray absorption spectroscopy, Catal. Lett. 95 (2004) 77-86.
[39] J.D. Grunwaldt, M. Maciejewski, O.S. Becker, P. Fabrizioli, A. Baiker, Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation, J. Catal. 186 (1999) 458-469.
[40] M. Haruta, M. Daté, Advances in the catalysis of Au nanoparticles, Appl. Catal. A: Gen. 222 (2001) 427-437.
[41] E.D. Park, J.S. Lee, Effect of pretreatment conditions on CO oxidation over supported Au catalysts, J. Catal. 186 (1999) 1-11.
[42] A. Wolf, F. Schuth, A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl. Catal. A: Gen. 226 (2002) 1-13.
[43] D. Boyd, S. Golunski, G.R. Hearne, T. Magadzu, K. Mallick, M.C. Raphulu, A. Venugopal, M.S. Scurrell, Reductive routes to stabilized nanogold and relation to catalysis by supported gold, Appl. Catal. A: Gen. 292 (2005) 76-81.
[44] N. Dimitratos, A. Villa, C.L. Bianchi, L. Prati, M. Makkee, Gold on titania: Effect of preparation method in the liquid phase oxidation, Appl. Catal. A: Gen. 311 (2006) 185-192.
[45] 陳星佑, 巴豆醛於Au/Mg2AlO-hydrotalcite 觸媒之液相選擇性氫化反應研究, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2009).
[46] N. Weiher, E. Bus, L. Delannoy, C. Louis, D.E. Ramaker, J.T. Miller, J.A.V. Bokhoven, Structure and oxidation state of gold on different supports under various CO oxidation conditions, J. Catal. 240 (2006) 100-107.
[47] J. Garcıa-Serrano, A.G. Galindo, U. Pal, Au–Al2O3 nanocomposites: XPS and FTIR spectroscopic studies, Sol. Energy Mater. Sol. Cells 82 (2004) 291-298.
[48] M.A.P. Dekkers, M.J. Lippits, B.E. Nienwenhuys, Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions, Catal. Today 54 (1999) 381-390.
[49] H.H. Kung, M.C. Kung, C.K. Costello, Supported Au catalysts for low temperature CO oxidation, J. Catal. 216 (2003) 425-432.
[50] E.Gy. Szabó, A. Tompos, M. Hegedűs, Á. Szegedi, J.L. Margitfalvi, The influence of cooling atmosphere after reduction on the catalytic properties of Au/Al2O3 and Au/MgO catalysts in CO oxidation, Appl. Catal. A: Gen. 320 (2007) 114-121.
[51] 土壤無機固定相, 台灣大學.
[52] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti, S. Galvagno, A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts, Catal. Today 122 (2007) 341-351.
[53] H.C. Brown, K. Sivasankaran, Hydrogenation of nitroaromatics in the presence of the new platinum metal and carbon supported platium metal catalyst, J. Am. Chem. Soc. Comm. to the Editor, 84, 2828 (1962)
[54] P.H. Emmett, H.C. Yao, Kinetic of liquid phase hydrogenation. IV, hydrogenation of nitrocompounds over Raney nickel and nickel poweder catalysts, J. Am. Chem. Soc. 84 (1962) 1086.
[55] H.D. Burge, D.J. Collins, Intermediates in the Raney nickel catalyzed hydrogenation of nitrobenzene to aniline, Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 389.
[56] 蔡漢良, 硝基苯在P-1硼化鎳觸媒之氫化反應, 國立台灣大學, 化學工程學系, 碩士論文 (1984).
[57] P. Baumeister, H.U. Blaser, W. Scherrer, Stu. Surf, Chemoselective hydrogenation of aromatic chloronitro compounds with amidine modified nickel catalysts, Sci. Catal. 59 (1991) 321-360.
[58] P. Baumeister, H.U. Blaser, U. Siegrist, M. Studer, Strong reduction of hydroxylamine accumulation in the catalytic hydrogenation of nitroarenes by vanadium promoters, Chem. Ind. (Dekker) 75 (1998) 219-222.
[59] E. Auer, A. Freud, M. Gross, R. Hartung, P. Panster, Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes, Chem. Ind. (Dekker) 75 (1998) 225-231.
[60] A. Onopchenko, E.T. Sabourin, C.M. Selwitz, Novel substituted amino-aromatic acetylenes and their method of preparation, J. Org. Chem. 44 (1979) 1233-1237.
[61] A. Mori, T. Mizusaki, M. Kawase, T. Maegawa, Y. Monguchi, S. Takao, Y. Takagi, H. Sajiki, Adv. Synth, Novel palladium-on-carbon/diphenyl sulfide complex for chemoselective hydrogenation: preparation, characterization, and application, Catal. 350 (2008) 406-411.
[62] J.M. Hawkins, T.W. Makowski, Optimizing selective partial hydrogenations of 4-nitroacetophenone via parallel reaction screening, Org. Process Res. Dev. 5 (2001) 328-330.
[63] A. Corma, P. Serna, Chemoselective hydrogenation of nitro compounds with supported gold catalysts, Science 313 (2006) 332-334.
[64] A. Corma, P. Conception, P. Serna, A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts, Angew. Chem. 119 (2007) 7404-7408.
[65] F. Haber, Z. Elektrochem. 22 (1898) 506.
[66] A. Corma, M. Boronat, S. Gonzalez, F. Illas, A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support, Chem. Commun. 32 (2007) 16230-16237.
[67] P. Serna, P. Conception, A. Corma, Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics, J. Catal. 265 (2009) 8748-8753.
[68] K. Shimizu, Y. Miyamoto, T. Kawasaki, T. Tanji, Y. Tai, A. Satsuma, Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: mechanistic reasons of size-and support-dependent activity and selectivity, J. Phys. Chem. C 113 (2009) 17803-17810.
[69] A.N. Christensena, T.R. Jensenb, C.R.H. Bahlc, E. DiMasid, Nano size crystals of goethite,[alpha]-FeOOH: Synthesis and thermal transformation, J. Solid State Chem. 180 (2007) 1431-1435
[70] J. Erkelens, C. Kemball, A.K. Galway, Trans. Faraday Soc. 59 (1963) 1181-1191.
[71] R.P. Chambers, M. Boudart, J. Catal. 5 (1966) 517-528.
[72] N.S. Figoli, S.A. Hillar, J.M. Parera, Poisoing and nature of alumina surface in the dehydration of methanol, J. Catal. 20 (1971) 230-237.
[73] Y. Amenomiva, J. Catal. 22 (1971) 109-116.
|