參考文獻 |
[1] 洪文雅,「揮發性有機廢氣處理技術簡介」,台灣環保產業雙週刊,2003年10月。資訊報告,No.61,pp.2-6,1994。
[2] 李定粵,「觸媒的原理與應用」,正中書局,1990年10月。
[3] 朱小容,陳郁文,「工業廢氣特殊處理技術」,化工資訊,pp.68-78,1992年2月。
[4] 劉國棟,「VOC 管制趨勢展望」,工業汙染防治,第10卷,第48期,pp.15-31,1993。
[5] 「臭氣處理程序設計評估技術」,工研院化工所,1991。
[6] 資訊報告,No.61,pp.2-6,1994。
[7] 許朝翔,「以粒狀觸媒氧化甲苯之研究」,中山大學碩士論文,2007年。
[8] 工業技術研究院環境與安全衛生技術發展中心 MSDS,2007。
[9] 行政院環保署毒性化學物質,毒理資料庫列管物質,苯。
[10] P. Papaefthimiou, T. Ioannides, X. E. Verykios, “Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts”, Appl. Catal. B: Environ. 13 (1997) 175-184.
[11] T. F. Garetto, C. R. Apestegu´ıa, “Structure sensitivity and in situ activation of benzene combustion on Pt/Al2O3 catalysts”, Appl. Catal. B: Environ. 32 (2001) 83-94.
[12] A. A. Barresia, G. Baldi, “Deep catalytic oxidation kinetics of benzene-ethenylbenzene mixtures”, Chem. Eng. Sci. 47 (1992) 1943-1953.
[13] T. F. Garetto, M. S. Avila, “Deep Oxidation of Benzene on Pt/V2O5–TiO2 Catalysts”, Catal Lett (2009) 130:476–480.
[14] K. T. Chuang, A. A. Davydov, A. R. Sanger, Mingqian Zhang “Effect of fluorination of alumina support on activity of platinum catalysts for complete oxidation of benzene”, Catal. Lett. 49 (1997) 155-161.
[15] C. A. Lin, J. C. Wu, J. W. Pan, C. T. Yeh, “Characterization of Boron - Nitride - Supported Pt Catalysts for the Deep Oxidation of Benzene”, J. of Catal. 210 (2002) 39-45.
[16] C. He, J. Li , P. Li , J. Chenga, Z. Hao, “Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation”, Appl. Catal. B: Environ. 96 (2010) 466–475.
[17] R.S.G. Ferreira, P.G.P. de Oliveira, F.B. Noronha, “The effect of the nature of vanadium species on benzene total oxidation”, Appl. Catal. B: Environ. 29 (2001) 275-283.
[18] M. Vassileva, A. Andreev, S. Dancheva, N. Kotsev, “Complete Catalytic oxidation of benzene over supported vanadium oxides modified by palladium”, Appl. Catal. 49 (1989) 125-141.
[19] R.S.G. Ferreira, P.G.P. de Oliveira, F.B. Noronha, “Characteriza -tion and catalytic activity of Pd/V2O5/Al2O3 catalysts on benzene total oxidation”, Appl. Catal. B: Environ. 50 (2004) 243-249.
[20] T. Garcia, B. Solsona, D. Cazorla-Amoro´s, A. Linares-Solano, S. H. Taylor, “Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds”, Appl. Catal. B: Environ. 62 (2006) 66-76.
[21] 周珮萱, “Pd/Ce1-xYxO2-δ觸媒進行苯全氧化反應之研究”, 國立中央大學研究所碩士論文(2010)
[22] H. S. Kim, T. W. Kim, H. L. Koh, S. H. Lee, “Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ-alumina: influence of Pt-Pd ratio on the catalytic activity”, Appl. Catal. A: Gen. 280 (2005) 125-131.
[23] M. Zhang, B. Zhou, K. T. Chuang, “Catalytic deep oxidation of volatile organic compounds over fluorinated carbon supported platinum catalysts at low temperatures”, Appl. Catal. B: Environ. 13 (1997) 123-130.
[24] F. Diehl, J. B. Jr., D. Duprez, I. Guibard a, G. Mabilon, “Catalytic oxidation of heavy hydrocarbons over Pt/Al2O3. Influence of the structure of the molecule on its reactivity”, Appl. Catal. B:Environ. 95 (2010) 217–227.
[25] P. Papaefthimiou, T. Ioannides, X. E. Verykios, “Performance of doped Pt/TiO2, (W6+) catalysts for combustion of volatile organic compounds (VOCs)”, Appl. Catal. B: Environ. 15 (1998) 75-92.
[26] J. C. S. Wu, Z. A. Lin, F. M. Tsai, J. W. Pan, “Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts”, Catal. Today 63 (2000) 419-426.
[27] J. J. Li, X. Yanxu, Z. Jiang, Z. P. Hao, C. Hu, “Nanoporous silica-supported nanometric palladium: synthesis, characterization, and catalytic deep oxidation of benzene for complete benzene oxidation”, Environ. Sci. Technol. (2005) 1319-1323.
[28] 劉世尹,“半導體廠PFCs及VOCs廢氣排放處理之研究”,國立中央大學博士論文(2008)
[29] D. Andreeva, R. Nedyalkova, L. Ilievaa, M. V. Abrashev, Y. Zhang, Y. Wang, “Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation”, Appl. Catal. A: General 246 (2003) 29-38.
[30] S. Y. Lai, Y. Qiu, W. Shen, “Effects of the structure of ceria on the activity of gold/ceria catalysts for the oxidation of carbon monoxide and benzene”, J. Catal. 237 (2006) 303-313.
[31] D. Andreeva, T. Tabakova, L. Ilievaa, A. Naydenov, D. Mehanjiev, M. V. Abrashev, “Nanosize gold catalysts promoted by vanadium oxide supported on titania and zirconia for complete benzene oxidation”, Appl. Catal. A: Gen. 209 (2001) 291-300.
[32] L. Ilieva, J. W. Sobczak, M. Manzoli, B. L. Su, D. Andreeva, “Reduction behavior of nanostructured gold catalysts supported on mesoporous titania and zirconia”, Appl. Catal. A: Gen. 291 (2005) 85-92.
[33] V. Idakiev, L. Ilievaa, D. Andreeva, J. L. Blin, L. Gigot, B. L. Su, “Complete benzene oxidation over gold-vanadia catalysts supported on nanostructured mesoporous titania and zirconia”, Appl. Catal. A: Gen. 243 (2003) 25-39.
[34] D. Andreeva, R. Nedyalkova, L. Ilievaa, M. V. Abrashev, “Gold–vanadia catalysts supported on ceria–alumina for complete benzene oxidation”, Appl. Catal. B: Environ. 52 (2004) 157-165.
[35] M. A. Centeno, M. Paulis, M. Montes, J. A. Odriozola, B. Taouk, “Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts”, Appl. Catal. A: Gen. 234 (2002) 65-78.
[36] D. Andreeva, P. Petrova, L. Ilieva, J. W. Sobczak, M. V. Abrashev, “Gold supported on ceria and ceria–alumina promoted by molybdena for complete benzene oxidation”, Appl. Catal. B: Environ. 67 (2006) 237-245.
[37] D. Andreeva, P. Petrova, L. Ilieva, J. W. Sobczak, M. V. Abrashev, “Design of new gold catalysts supported on mechanochemically activated ceria-alumina, promoted by molybdena for complete benzene oxidation”, Appl. Catal. B: Environ. 77 (2008) 364-372.
[38] R. Nedyalkova, L. Ilieva, M. C. Bernard, A. H. Goff , D. Andreeva, “Gold supported catalysts on titania and ceria, promoted by vanadia or molybdena for complete benzene oxidation”, Mater. Chem. and Phys. 116 (2009) 214-218.
[39] C. D. Pina, N. Dimitratos, E. Falletta, M. Rossi, A. Siani, “Catalytic performance of gold catalysts in the total oxidation of VOCs”, Gold Bull.(2007) 67-72.
[40] J. Lichtenberger, M. D. Amiridis, “Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts”, J. Catal. 223 (2004) 296-308.
[41] 蘇崇毅, “蜂巢狀波洛斯凱特觸媒用於合成氣燃燒反應之研究”, 國立成功大學研究所碩士論文(2007)
[42] R. Spinicci, M. Faticanti, P. Marini, S. De Rossi, P. Porta, “Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion”, J. Mol. Catal. A: Chemical 197 (2003) 147-155.
[43] V. Blasin-Aubé, J. Belkouch, L. Monceaux, “General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3+x perovskite catalyst -influence of mixture”, Appl. Catal. B: Environ. 43 (2003) 175-186.
[44] V. D. Sokolovskii, “Principles of oxidative catalysis on solid oxides”, Catal. Rev. Sci. Eng. 32 (1990) 1-49.
[45] Y. M. Alifanti, M. Florea, V. I. Parvulescu, “Ceria-based oxides as supports for LaCoO3 perovskite catalysts for total oxidation of VOC”, Appl. Catal B: Environ. 70 (2007) 400-405.
[46] R. Craciun, B. Nentwick, K. Hadjiivanov, H. Knözinger, “Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation”, Appl. Catal. A: Gen. 243 (2003) 67-79.
[47] G. G. Xia, Y. G. Yin, W. S. Willis, J. Y. Wang, S. L. Suib, “Efficient stable catalysts for low temperature carbon monoxide oxidation”, J. Catal. 185 (1999) 91-105.
[48] K. Ramesh, L. Chen, F. Chen, Z. Zhong, J. Chin, H. Mook, Y. F. Han, “Preparation and characterization of coral-like nanostructured α-Mn2O3 catalyst for catalytic combustion of methane”, Catal. Commun. 8 (2007) 1421-1426.
[49] Y. F. Han, L. Chen, K. Ramesh, E. Widjaja, S. Chilukoti, I. K. Surjami, “Kinetic and spectroscopic study of methane combustion over α-Mn2O3 nanocrystal catalysts”, J. Catal. 253 (2008) 261-268.
[50] C. Lahousse, A. Bernier, P. Grange, B. Delmon, P. Papaefthimiou, T. Ioannides, X. Verykiosy, “Evaluation of γ-MnO2 as a VOC removal catalyst: comparison with a noble metal catalyst”, J. Catal. 178 (1998) 214-225.
[51] M. A. Peluso, L. A. Gambaro, E. Pronsato, D. Gazzoli, H. J. Thomas, J. E. Sambeth, “Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs”, Catal. Today 133-135 (2008) 487-492.
[52] R. Craciun, B. Nentwick, K. Hadjiivanov, H. Knözinger, “Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation”, Appl. Catal. A: Gen. 243 (2003) 67-79.
[53] F. C. Buciuman, F. Patcas, T. Hahn, “A spillover approach to oxidation catalysis over copper and manganese mixed oxides”, Chem. Eng. Prog. 38 (1999) 563-569.
[54] V. H. Vu, J. Belkouch, A. O. Dris, B. Taouk, “Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst”, J. Hazard. Mater. 169 (2009) 758-765.
[55] M. R. Morales, B. P. Barbero, L. E. Cadu´s, “Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts”, Appl. Catal. B: Environ. 67 (2006) 229-236.
[56] M. Ferrandon, J. CarnoÈ, S. JaÈraÊs, E. BjoÈrnbom, “Total oxidation catalysts based on manganese or copper oxides and platinum or palladium I: Characterisation”, Appl. Catal. A: Gen. 180 (1999) 141-151.
[57] M. I. Vass, V. Georgescu, “Complete oxidation of benzene on Cu-Cr and Co-Cr oxide catalysts”, Catal. Today 29 (1996) 463-470.
[58] S. C. Kim, “The catalytic oxidation of aromatic hydrocarbons over supported metal oxide”, J. Hazard. Mater. B91 (2002) 285–299.
[59] C. H. Wang, S. S. Lin, C. L. Chen, H. S. Weng, “Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons”, Chemosphere 64 (2006) 503-509.
[60] C. H. Wang, S. S. Lin, “Preparing an active cerium oxide catalyst for the catalytic incineration of aromatic hydrocarbons”, Appl. Catal. A: Gen. 268 (2004) 227-233.
[61] W. Liu, M. F. Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity”, J. Catal. 153 (1995) 304-316.
[62] W. Liu, M. F. Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: II. Catalyst characterization and reaction”, J. Catal. 153 (1995) 317-332.
[63] D. Delimaris, T. Ioannides, “VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method”, Appl Catal B: Environ. 89 (2009) 295-302.
[64] C. Hua, Q. Zhu, Z. Jiang, Y. Zhang, Y. Wang, “Preparation and formation mechanism of mesoporous CuO-CeO2 mixed oxides with excellent catalytic performance for removal of VOCs”, Micro. Meso. Mater. 113 (2008) 427-434.
[65] A. Martinez-Arias, M. Fernandez-Garcia, O. Gaivez, J. M. Coronado, J. A. Anderson, “Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts”, J. Catal. 195 (2000) 207-216.
[66] M. Ozawa, C. K. Loong, “In situ X-ray and neutron powder diffraction studies of redox behavior in CeO2-containing oxide catalysts”, Catal. Today 50 (1999) 329-342.
[67] M. Daturi, E. Finocchio, C. Binet, J. C. Lavalley, F. Fally, V. Perrichon, “Study of bulk and surface reduction by hydrogen of CexZr1-xO2 mixed oxides followed by FTIR spectroscopy and magnetic balance”, J. Phys. Chem. B 103 (1999) 4884-4891.
[68] R. D. Monte, G. R. Rao, J. Kašpar, S. Meriani, A. Trovarelli, M. Graziani, “Rh-Loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural-properties”, J. Catal. 151 (1995) 168-177.
[69] P. Fornasiero, E. Fonda, R. D. Monte, G. Valic, J. Kaspar, M. Graziani, “Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides”, J. Catal., 187 (1999) 177-185.
[70] A. Martinez-Arias, M. Fernandez-Garcia, “Spectroscopic study of a Cu/CeO2 catalyst subjected to redox treatments in carbon monoxide and oxygen”, J. Catal. 182 (1999) 367-377.
[71] G. Vlaic, P. Fornasiero, S. Geremia, J. Kaspar, M. Graziani, “Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr-O local structure”, J. Catal. 168 (1997) 386-392.
[72] K. Otsuka, Y. Wang, M. Nakamura, “Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2–ZrO2 solid solution at moderate temperature”, J. Catal. 183 (1999) 317-324.
[73] C. Descorme, Y. Madier, D. Duprez, “Infrared study of oxygen adsorption and activation on cerium-zirconium mixed oxides”, J. Catal. 196 (2000) 167-173.
[74] 陳翰全, “CuO/Ce1-xZrxO2觸媒於富氫中CO的選擇性氧化反應研究”,中央大學碩士論文(2004).
[75] 簡崇訓, “CuO/CexZr1-xO2觸媒進行甲苯完全氧化反應之研究”,中央大學碩士論文(2009)
[76] C. Hu, Q. Zhu, Z. Jiang, “Nanosized CuO-ZrxCe1-xOy aerogel catalysts prepared by ethanol supercritical drying for catalytic deep oxidation of benzene”, Powder Technol. 194 (2009) 109-114.
[77] C. Hu, “Highly efficient complete oxidation of dilute benzene over ultrafine Cu0.1Ce0.5Zr0.4O2-δ catalyst in a fluidized bed reactor”, Catal. Commun. 10 (2009) 2008-2012.
[78] G. Blanco, M. A. Cauqui, J. J. Delgado, A. Galtayries, J. A. Pe´ rez-Omil1, J. M. Rodr´guez-Izquierdo, “Preparation and charac -terization of Ce-Mn-O composites with applications in catalytic wet oxidation processes”, Appl. Catal. A: Gen. 255 (2003) 331-336.
[79] S. Imamura, M. Shono, N. Okamoto, A. Hamada, S. Ishida, “Effect of cerium on the mobility of oxygen on manganese oxides”, Appl. Catal. A: Gen. 142 (1996) 279-288.
[80] F. Arena, G. Trunfio, J. Negro, B. Fazio, L. Spadaro, “Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel “redox-precipitation” route”, Chem. Mater. 19 (2007) 2269-2276.
[81] F. Arena, G. Trunfio, J. Negro, L. Spadaro, “Synthesis of highly dispersed MnCeOx catalysts via a novel redox-precipitation route”, Mater. Res. Bull. 43 (2008) 539-545.
[82] H. Chen, A. Sayari, A. Adnot, F. Larachi, “Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation”, Appl. Catal. B: Environ. 32 (2001) 195-204.
[83] D. Delimaris, T. Ioannides, “VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method”, Appl. Catal. B: Environ. 84 (2008) 303-312.
[84] S. Zuo, Q. Huang, J. Li, R. Zhou, “Promoting effect of Ce added to metal oxide supported on Al pillared clays for deep benzene oxidation”, Appl. Catal. B: Environ. 91 (2009) 204-209.
[85] X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, W. Shen, “MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature”, Appl. Catal. B: Environ. 62 (2006) 265-273.
[86] X. Tang, Y. Xu, W. Shen, “Promoting effect of copper on the catalytic activity of MnOx–CeO2 mixed oxide for complete oxidation of benzene”, Chem. Eng. J. 144 (2008) 175-180.
[87] 李亭儀, “苯於CuO/Ce1-xMnxO2觸媒之全氧化反應研究”,中央大學碩士論文(2010).
[88] S. Azalim, M. Franco, R. Brahmi, J. M. Giraudon, J. F. Lamonier, “Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr–Ce–Mn catalysts”, J. Hazard. Mater. 188 (2011) 422–427.
[89] T. Rao, M. Shen, L. Jia, J. Hao, J. Wang, “Oxidation of ethanol over Mn–Ce–O and Mn–Ce–Zr–O complex compounds synthesized by sol–gel method”, Catal. Commun. 8 (2007) 1743–1747.
[90] W. Xiaodong, L. Qing, W. Duan, “Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst”, J. Rare Earths 24 (2006) 549-553.
[91] M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide”, J. Catal, 115 (1989) 301-309.
[92] W. Xingyi, K. Qian, L. Dao, “Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts”, Appl. Catal. B: Environ. 86 (2009) 166-175.
[93] 葉君棣,陳志堅,「X射線光電子分光儀應用手冊」,黎明書局,1984年8月。
[94] F. Larachi, J. Pierre, A. Adnot, A. Bernis, “Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts”, Appl. Surf. Sci. 195 (2002) 236-250.
[95] F. Buciuman, F. Patcas, R. Craciun, D. R. T. Zahn, “Vibrational spectroscopy of bulk and supported manganese oxides”, Phys. Chem. Chem. Phys. 1 (1999) 185-190.
|