博碩士論文 983204063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.227.111.208
姓名 張哲維(Jhe-wei Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 應用混合薄膜及雙層結構改善單層二氧化鉿薄膜電阻轉換的均勻性
(Uniformity Improvement of Resistive Switching in HfO2 Thin Films with Mixed Oxide and Bilayer Structure)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電阻式記憶體(RRAM)結合了快閃記憶體的非揮發性、靜態存取記憶體的快速存取、動態存取記憶體的高密度,配合低耗能、低成本、構造簡單、保存資料能力佳的優勢,使其在非揮發性記憶中受到極大的矚目。但直至今日,電阻式記憶體的高低阻態隨著施加偏壓而改變的轉換機制尚未明瞭,導致電阻式記憶體的電阻轉換均勻性仍有待改善。
本實驗使用MOCVD方式沉積HfO2薄膜及不同厚度的Al2O3薄膜,利用混合以及雙層薄膜結構,濺鍍Ni金屬電極於薄膜上,開發金屬/氧化層/半導體的三明治(sandwich)結構之RRAM元件,藉此改善單層HfO2的電阻轉換均勻性缺點。以Al2O3薄膜在HfO2薄膜的上層或下層或者改變上層Al2O3薄膜厚度,去區分雙層薄膜的電阻轉換特性。當Al2O3薄膜在HfO2薄膜的下方時,只能操作Bipolar switching,而當Al2O3薄膜在HfO2薄膜的上方時,可以操作Nonpolar switching,但當Al2O3薄膜厚度達到一定厚度時,只能操作Bipolar switching。另外藉由單層薄膜的電性量測,去加以驗證其燈絲機制是以金屬Ni主導或是氧空缺主導。最後,本實驗利用此結果,建立其電阻轉換機制。
摘要(英) Resistance Random Access Memory (RRAM) has attracted increasing attention in recent years as the next-generation nonvolatile memory, due to its non-volatile property like Flash memory, fast access speed like SRAM, high-density storage like DRAM. Furthermore, RRAM has the advantages of low-power operation, low cost, simple structure, and good retention. However, understandings of RRAM mechanisms behind resistive-switching (RS) were still unknown. So it is hard to well control the uniformity of RS behaviors.
In this study, various thickness of the Al2O3 layer and HfO2 layer by MOCVD deposition with the Ni top electrode. The improved uniformity of RS behaviors is demonstrated in the HfAlOX mixed oxide and the Al2O3/HfO2 bilayer RRAM devices. Furthermore, the RS properties of the bilayer structure with various Al2O3 thicknesses and the position of Al2O3 layer compared to the HfO2 have been investigated. Finally, we established the possible RS mechanisms in detail according to the electrical and physical analysis.
關鍵字(中) ★ 均勻性改善
★ 三氧化二鋁
★ 二氧化鉿
★ 雙層結構
★ 混合薄膜
★ 電阻式記憶體
關鍵字(英) ★ RRAM
★ Mixed oxide
★ Bilayer structure
★ HfO2
★ Al2O3
★ Uniformity improvement
論文目次 誌謝......................................................i
摘要......................................................i
Abstract.................................................ii
目錄....................................................iii
圖目錄...................................................ix
表目錄...................................................xv
第一章、緒論..............................................1
1-1 前言..................................................1
1-2 研究動機..............................................2
第二章、簡介及文獻回顧....................................3
2-1 記憶體簡介............................................3
2-1-1 磁阻式記憶體(MRAM).................................4
2-1-2 鐵電記憶體(FeRAM).................................5
2-1-3 相變化記憶體(PCRAM)...............................5
2-1-4 電阻式記憶體(RRAM)................................6
2-2 電阻式記憶體轉換現象與量測方式........................8
2-2-1 電阻轉換現象(Switching phenomenon)................8
2-2-2 電阻式記憶體量測種類...............................10
2-3 電阻轉換現象機制.....................................11
2-3-1 熱化學效應.........................................12
2-3-2 金屬離子的電化學效應...............................13
2-3-3 價電子轉換效應.....................................14
2-4 電阻式記憶體材料....................................15
2-4-1 多元金屬氧化物.....................................16
2-4-2 過度金屬氧化物.....................................16
2-4-3 有機材料...........................................19
2-5 漏電流介紹...........................................21
2-5-1 歐姆電流(Ohmic current)............................21
2-5-2直接穿隧 (Direct tunneling).........................21
2-5-3傅勒−諾得翰穿隧 (Fowler−Nordheim tunneling).........22
2-5-4空間電荷限制傳導(Space charge limited conduction)...23
第三章 實驗流程.........................................42
3-1 試片的製備...........................................42
3-1-1 下電極及基板的製備.................................42
3-1-2 介電層二氧化鉿(HfO2)以及三氧化二鋁 (Al2O3) 的沉積42
3-1-3 退火條件...........................................43
3-1-4 上電極的製備.......................................43
3-2 薄膜物性分析.........................................44
3-2-1 薄膜結晶性分析(XRD)..............................44
3-2-2 場發射穿透式電子顯微鏡(TEM)及X射線能量散佈分析儀(EDS)..................................................44
3-2-3 歐傑電子顯微鏡(AES) & 化學分析電子儀(ESCA).........45
3-2-4 二次離子質譜儀(SIMS).............................45
3-3 電性量測.............................................46
3-3-1 電流-電壓量測(I-V curve).........................46
3-3-2 電阻-時間之關係....................................46
3-3-3 電阻-溫度之關係....................................47
第四章、混合薄膜結果與討論...............................54
4-1 薄膜結構分析.........................................54
4-1-1 X光繞射分析(XRD).................................54
4-1-2 X光光電子能譜儀(XPS).............................54
4-2 電性量測分析.........................................56
4-2-1 HfAlOx薄膜的I-V特性................................56
4-2-2 HfO2薄膜與混合比例4:1的HfAlOx薄膜I-V特性比較......58
第五章、雙層結構結果與討論...............................74
5-1 薄膜結構分析.........................................74
5-1-1 場發射穿透式電子顯微鏡(TEM)......................74
5-1-2 X射線能量散佈分析儀(EDS).........................75
5-1-3 歐傑電子顯微鏡(AES)................................75
5-2 電性量測分析.........................................75
5-2-1 不同的Al2O3厚度對Forming process的影響.............76
5-2-2 雙層薄膜結構的Forming curve 比較...................76
5-2-3 雙層薄膜結構的Bipolar特性..........................77
5-2-4 雙層薄膜結構的Unipolar特性.........................78
5-2-5 在限流50μA下的單層與雙層Ni/ Al2O3/ HfO2/ Si結構累積分布圖...................................................78
5-2-6 在限流100μA下的單層與雙層Ni/ Al2O3/ HfO2/ Si結構累積分布圖...................................................80
5-2-7 不同限流條件下的單層與雙層薄膜結構累積分布圖.......82
5-3電阻轉換機制..........................................82
5-3-1 單層結構電阻轉換發生的機制.........................82
5-3-2 Ni/ HfO2/ Al2O3/ Si結構電阻轉換發生的機制..........83
5-3-3 Ni/ Al2O3/ HfO2/ Si結構電阻轉換發生的機制..........84
第六章、結論............................................108
6-1 混合薄膜HfAlOX結構..................................108
6-2 雙層薄膜結構........................................109
第七章、未來與展望......................................110
參考文獻................................................111
參考文獻 [1] R. Waser , Nanotechnology, Vol.3 , Wiley-VCH, Weinhein (2008).
[2] 雷宇宏,「新興存儲器之技術動態探析」。
[3] 余昭倫,「綜觀新世代記憶體-相變化記憶體」,Digitimes技術IT,2006 。
[4] 葉林秀、李佳謀、徐明豐等,「磁阻式隨機存取記憶體技術的發展—現在與未來」,物理雙月刊 廿六卷四期,2004 。
[5] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,「先進記憶體簡介」,國研科技創刊號。
[6] 高明哲,「產要要聞」,2004年研究報告。
[7] 客橋,「淺談新興非揮發性記憶體技術」,台灣區電機電子工業同業公會,2006。
[8] 高明哲,「非揮發性記憶體,相變化記憶體」,奈米電子元件技術組。
[9] 林宗輝,「記憶體產業大革命超長壽命次世代快閃記憶體技術閱兵」,Digitimes技術IT,2006。
[10] 電子月刊,「鐵電記憶元件特輯」,2002。
[11] R. Waser, R. Dittmann, G. Straikov, and K. Szot, “Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater. 2632(2009).
[12] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo , U-In Chung, and J. T. Moon, “Highly Scalable Non-volatile Resisitive Memory using Simply Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses”, Tech. Dig. - Int. Electron Devices Meet. 2004, 587 (2004).
[13] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films”, Appl. Phys. Lett. 86, 262907 (2005).
[14] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, Y. S. Joung, and I. K. Yoo, “Giant and Stable Conductivity Switching Behaviors in ZrO2 Films Deposited by Pulsed Laser Depositions ”, Jpn. J. Appl. Phys. 44 L345 (2005).
[15] H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, “Forming Process Investigation of CuxO Memory Films”, IEEE Electron Device Lett., 29 (1), 47-79 (2008).
[16] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, “Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction Mechanism”, Tech. Dig. - Int. Electron Devices Meet. 2008, 293 (2008).
[17] I. G. Baek, D. C. Kim, M. J. Lee, H.-J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U.-I. Chung, J. T. Moon, and B. I. Ryu, “Multi-layer Cross-point Binary Oxide Resistive Memory (OxRRAM) for Post-NAND Storage Application”, Tech. Dig. - Int. Electron Devices Meet. 2005, 750(2005).
[18] H. Y. Lee, P. S. Chen,T. Y. Wu, Y. S. Chen, C.C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, “Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM”, - Int. Electron Devices Meet.2008, 17(2008).
[19] J. W. Park, D. Y. Kim, and J. K. Lee, "Reproducible resistiveswitching in nonstoichiometric nickel oxide films grown by rf reactive sputtering for resistive random access memory applications”, J. Vac. Sci. Technol. A 23 (5), 1309-1313 (2005).
[20] Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang and M. Liu, “Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications”, Nanotechnology 21, 045202(2010).
[21] H. Huang, W. Shih, and C. La, “Nonpolar resistive switch in the Pt/MgO/Pt nonvolatile memory device”, Appl. Phys. Lett. 96, 193505 (2010).
[22] A. Baikalov, Y. Q. Wang, B. Shen et al., “Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett. 83(5), 957(2003).
[23] A. Beck, J. G. Bednorz, C. Gerber et al., "Reproducible switchingeffect in thin oxide films for memory applications”, Appl. Phys. Lett. 77(1), 139-141 (2000).
[24] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition”, J. Appl. Phys. 98, 033715(2005).
[25] R. Waser, M. Aono, “Nanoionics-based resistive switching memories”, Nature Materials, Vol.6, November 833(2007).
[26] C. C. Lin, B. C. Tu, C. H. Lin et al., "Resistive switching mechanisms of V-doped SrZrO3 memory films”, IEEE Electron Device Lett. 27 (9), 725-727 (2006).
[27] A. Sawa, “Resistive switching in transition metal oxides”, Materialstoday, Vol 11, 28(2008).
[28] R. Waser, “Resistive non-volatile memory devices”, Microelectronic Engineering, 86, 1925(2009).
[29] M. N. Kozicki, M. Yun, L. Hilt and A. Singh, “Applications of programmable resistance changes in metal-doped chalcogenides”, Electrochem. Soc. 298(1999).
[30] R. Waser, “Electrochemical and Thermochemical Memories”, IEDM, 289(2008).
[31] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application”, Nano Letters, Vol.9, 1636(2009).
[32] T. Baiatu, R. Waser and K. Hardtl, “DC electrical degradation of perovskite-type titanates : III. A model of the mechanism”, J. Am. Cream. Soc. 73, 1663(1990).
[33] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, “A Unified Physical Model of Switching Behavior in Oxide-Based RRAM”, VLSI, 100(2008).
[34] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory”, Nature nanotechnology, 148(2010).
[35] A. Beck, J. G. Bednorz, CH. Gerber, C. Rossel and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett. 77, 139(2000).
[36] C. Rossel, G. l. Meijer, D. Bre’maud, and D. Widmer, “Electrical current distribution across a metal-insulator-metal structure during bistable switching”, App. Phys. Lett. 90, 2892(2001).
[37] L. Ma, J. Liu, S. Pyo, and Y. Yang, “Organic bistable light-emitting devices”, Appl. Phys. Lett. 80, 362(2002).
[38] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells”, Appl. Phys. Lett. 80, 2997(2002).
[39] 劉志益,曾俊元,「電阻式非揮發性記憶體之近期發展」。
[40] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films”, Appl. Phys. Lett. 76, 2749(2000).
[41] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysterestic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett. 85, 4073(2004).
[42] C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu,and T. Y. Tseng, “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film”, IEEE Electron Device Lett. 26, 351-353 (2005).
[43] Y. Watanabe, J. G. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A.Beck, and S. J. Wind, “Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, Appl. Phys. Lett. 78, 3738-3740 (2001).
[44] D. C. Kim, S. Seo, S. E. Ahn, D. S. Suh, M. J. Lee, B. H. Park, I.K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U. I. Chung, J. T. Moon, and B. I. Ryu, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films”, Appl. Phys. Lett.88, 202102 (2006).
[45] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S.Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition”, J. Appl. Phys. 98, 033715 (2005).
[46] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J.Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications”, Appl. Phys. Lett. 92, 022110 (2008).
[47] K. L. Lin, T. H. Hou, J. Shieh, J. H. Lin, C.T. Chou, and Y. J. Lee, “Electrode dependence of filament formation in HfO2 resistive-switching Memory”, J. Appl. Phys. 109, 084104 (2011).
[48] J. F. Gibbons and W. E. Beadle, “Switching properties of thin NiO films” , Solid-State Electron. 7, 785 (1964).
[49] K. Terakura, A. R. Williams, T. Oguchi and J. Kübler “Transition - metal monoxides: band or mott insulators”, Phys. Rev. Lett. 52, 1830 (1984).
[50] P. Lunkenheimer, A. Loidl, C. R. Ottermann and K. Bange, “Correlated barrier hopping in NiO films”, Phys. Rev. B 44, 5927 (1991).
[51] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, and I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films”, Appl. Phys. Lett. 85, 5655 (2004).
[52] C.Y. Lin, D. Y. Lee, S. Y. Wang, C. C. Lin, and T. Y. Tseng, “Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices”, Surf. Coat. Technol. 203, 628 (2008).
[53] 連振炘,「金氧半元件物理課程講義chap. 8」,2004。
[54] A. Waxman and K. H. Zaininger, “Al2O3-silicon insulator gate field effect transistor”, Appl. Phys. Lett. 12, 109 (1968) .
[55] V. Kottler, M. F. Gillies, and A. E. T. Kuiper, “An in situ x-ray photoelectron spectroscopy study of AlOx spin tunnel barrier formation”, J. Appl. Phys. Lett. 89, 3301 (2001).
[56] M. F. Gillies, A. E. T. Kuiper, R. Coehoorn, and J. J. T. M. Donkers, “Compositional, structureal, electrical characterization of plasma oxidized thin aluminum layer for spin-tunnel junctions”, J. Appl. Phys.88, 429 (2000) .
[57] H. Gao, C. Mu, F. Wang, D. Xu, K Wu, and Y. Xie, “Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template”, J. Appl. Phys. 93, 5602 (2003).
[58] A. C. Galca, E. S. Kooil, H. Wormeester, and Cora Salm, “Structural and optical characterization of porous anodic aluminum oxide”, J. Appl. Phys. 94, 4296 (2003).
[59] M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M Poppeler, “Robustness of ultrathin aluminum oxide dielectrics on Si(001) ”, Appl. Phys. Lett. 78, 2670 (2001).
[60] J. Kolodzey, E. A. Chowdhury, T. N. Adam, G. Qui, I. Rau, J. O. Olowolafe, J. S. Suehle, and Y. Chen, “Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon”, IEEE, Trans. Elec. Dev. 47, 121 (2000).
[61] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Applied Physics Review: High-k gate dielectrics : Current status and materials properties considerations”, J. Appl. Phys. 89, 5243 (2001).
[62] D. G. Park, H. J. Cho, K. Y. Lim, C. Lim, I. S. Yeo, J. S. Roh, and J. W. Park, “Characteristics of n+ polycrystalline-Si/Al2O3/Si metal-oxide-semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor”, J. Appl. Phys. 89, 6275 (2001).
[63] H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, W. K. Choi, “A high performance MIM capacitor using HfO2 dielectrics”, IEEE Electron Device Lett., vol. 23, pp. 514-516, Sep. (2002).
[64] S. J. Kim, B. J. Cho, M. F. Li, X. Yu, C. Zhu, A. Chin, D. L. Kwong, “PVD HfO2 for high- precision OMIM capacitor applications”, IEEE Electron Device Lett., vol. 24, pp. 387-389, JUNE. (2003).
[65] Q. Fang, J. Y. Zhang, Z. M. Wang, G. He, J. Yu, Ian W. Boyd, “High-k dielectrics by UV photo-assisted chemical vapor deposition”, Microelectronic Engineering 66 621-630 (2003).
[66] J. F. Kang, H. Y. Yu, C. Ren, M. F. Li, D. S. H. Chan, “Ultra-thin HfO2 gate stack with TaN/ HfN electrodes fabricated using a high temperature process”, Electrochemical and solid-state Letter, 8(11) G311-G313 (2005).
[67] 張家傑,「有機記憶體(organic memory)」,電子報,2005。
[68] 李雅明,「固態電子學」,全華科技圖書,1995。
[69] 吳朗,「電子陶瓷-介電」,全欣資訊圖書,1994。
[70] M. Ohring, “The Materials Science of Thin Films” published by Academic Press, Inc. (1992).
[71] A. Rose, “Space-Charge-Limited Currents in Solids”, Phys. Rev., 97(6), 1538 (1995).
[72] M. A. Lampert, “Simplified Theory of Space-charge-limited Currents in an Insulator with Traps”, Phys. Rev., 103(6), 1648 (1956).
[73] C. A. Mead, “Electron Transport Mechanisms in Thin Insulating Films”, Phys. Rev., 128(5), 2088 (1962).
[74] J. G. Simmons, “Potential Barriers and Emission-Limited Current Flow Between Closely Spaced Parallel Metal Electrode”, J. Appl. Phys. 35, 2472 (1964).
[75] K. L. Chopra, “Avalanche-Induced Negative Resistance in Thin Oxide Films”, J. Appl. Phys. 36, 184 (1965).
[76] S. M. Sze, “Current Transport and Maximum Dielectric Strength of Silicon Nitride Films”, J. Appl. Phys. 38, 2951 (1967).
[77] J. G. Simmons, “Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems”, Phys. Rev. 155, 657 (1967).
[78] S. M. Hu, D. R. Kerr and L. V. Gregor, “Evidence of Hole Injection and Trapping in Silicon Nitride Films Prepared by Reactive Sputtering”, Appl. Phys. Lett. 10, 97 (1967).
[79] J. R. Yeargan, “The Poole-Frenkel Effect with Compensation President”, J. Appl. Phys 46, 1399 (1975).
[80] 張志祥,「利用低壓化學氣相沉積法製作動態隨機存取記憶體應用之(Ta2O5)1-X-(TiO2)X 介電薄膜的研究」,國立清華大學,博士論文,2000。
[81] 施敏著,黃調元譯,半導體元件物理與製作技術,國立交通大學出版社,2002。
[82] 林俊宏,「不同電極於HfO2 薄膜上之電阻轉換現象」,國立中央大學,碩士論文,2010。
[83] G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, “Status and outlook of emerging nonvolatile memory technologies”, Tech. Dig. - Int. Electron Devices Meet. 2004, 567(2004).
[84] M.K. Hota, C. Mahata, S. Mallik, B. Majhi, T. Das, C.K.Sarkar, and C. K. Maiti, “Characterization of RF Sputter Deposited HfAlOx Dielectrics for MIM Capacitor Applications”, IEEE IEDST(2009)
[85] H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, and M. S. Joo, “Energy gap and band alignment for (HfO2)X(Al2O3)1-x on (100) Si”, Appl. Phys. Lett. 81, 2(2002).
[86] B. Gao, H.W. Zhang, S. Yu, B. Sun, L.F. Liu, X.Y. Liu, Y. Wang, R.Q. Han, J.F. Kang, B. Yu ,and Y.Y. Wang, “Oxide-Based RRAM: Uniformity Improvement Using A New Material-Oriented Methodology”, VLSI Circuits, 2009. Digest of Technical Papers. 2009 Symposium (2009).
[87] S. Yu, B. Gao, H. Dai, B. Sun, L. Liu, X. Liu, R. Han, J. Kang, and B. Yu, “Improved Uniformity of Resistive Switching Behaviors in HfO2 Thin Films with Embedded Al Layers”, Electrochem. Solid-State Lett. 13(2), H36-H38 (2010).
[88] J. C. Brewer and R. J. Walters, “Determination of energy barrier profiles for high-k dielectric materials utilizing bias-dependent internal photoemission”, Appl. Phys. Lett. 85, 18(2004).
[89] S. Yu, Y. Wu, and H.-S. P. Wong, “Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory”, Appl. Phys. Lett. 98, 103514 (2011).
[90] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, “Highly Scalable Hafnium Oxide Memory with Improvements of Resistive Distribution and Read Disturb Immunity”, - Int. Electron Devices Meet.2009, 105(2009).
[91] J. Lee, E. M. Bourim, W. Lee, J. Park, M. Jo, S. Jung, J. Shin, and H. Hwang, “ Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications”, Appl. Phys. Lett.97, 172105(2010).
[92] D. K. Schroder, “Semiconductor Material and Device Characterization”, 2rd Edition, John Wiley and Cons, Inc, (1998).
指導教授 周正堂(Cheng-tung Chou) 審核日期 2011-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明