以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:33 、訪客IP:18.117.188.105
姓名 蕭友享(Yu-Hsiang Hsiao) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 銲料於銅導線架濕潤性質之研究
(Study of solder wettability on Cu lead-frame)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 當對銅材,進行滾壓機械加工,一”表面滾壓層”會生成於其加工表面,這一薄薄的表面滾壓層性質、特性與銅塊材有顯著的不同。我們發現這一表面滾壓層會影響到銅材與焊料的溼潤性質,並且觀察到焊料在加工銅表面的溼潤性會隨著滾壓的進級率(material reduction percentage)改變。藉由溼潤性測試(wetting test)與背向式電子顯微觀察(back-scattered electron microscopy),我們發現銅/焊料間界面反應性與溼潤性兩者之間存在對應的關係。並證實了,在高鉛銲料/銅的焊接系統下,界面反應是溼潤性的驅動力。然而,快速的反應會消耗焊料溼潤前緣的錫含量,此時因為錫含量的下降而降低溼潤的驅動力,進而抑制焊料的溼潤。同時,藉由X光繞射圖(X-ray diffraction)所得到的結構係數(texture coefficient),我們了解到銅塊材經過滾壓後,在壓應力與剪應力的作用下,其優選方向會由原本(200)優選排列轉換至(220)優選方向,然而,在經過熱處理後會先恢復到隨機排列(random structure)方式,而在持續熱處理之後,最後恢復到(200)的優選方向。而我們也發現,銅塊材於(200)的優選方向具有較高的表面活性,進而導致了較高的反應性。最後,我們得到一個重要的結論:軟的銅塊材、高的進級率與多次的滾壓次數,會得到良好的濕潤性質。
摘要(英) Typically, a so-called surface rolling layer (SRL) would form on the Cu foil after mechanical process. This thin surface rolling layer has very different properties from the bulk Cu foil. We find that the thinner surface rolling layer by using the large cold-roll percentage, which affects the solder wettability on the rolled Cu. With wetting test results and BSE images, we can correlate the results of the reactivity with the solder wettability. And, we confirm that the reactivity is the driving force for wetting in high-Pb/Cu wetting solder system. The fast interfacial reaction depletes the Sn content in the wetting tip of the molten solder. As the Sn content in the wetting tip is insufficient, it is harmful for the wettability. From the XRD results and texture coefficient (TC), the preferred-orientation of the Cu raw material will transfer from (200) preferred-orientation to (220) preferred-orientation after rolling process. It is because of the compressive and the shear stress effects. Then, the Cu substrate reinstates to the random structure after annealing. Finally, the random structure will transform to the (200) preferred-orientation, as the Cu substrate is applied with a prolonged annealing. And we find that the (200) preferred-orientation has the highest surface reactivity. The higher TC of (200) will lead to the higher reactivity of the bulk Cu substrate. Finally, we conclude that: the softer Cu raw material, the higher MRP, and the higher rolling-times will lead to the better wettability.
關鍵字(中) ★ 銅材
★ 滾壓
★ 溼潤性質
★ 導線架關鍵字(英) ★ wettability
★ roll
★ Cu
★ lead-frame論文目次 1. Introduction: 1
1.1 Background: 1
1.2 Motivation: 3
2. Experimentals: 10
2.1 Cu substrate preparation: 10
2.2 Wettability test: 11
2.3 Cross-sectional, surface, and bulk analysis: 11
3. Results and discussion: 13
3.1 Wetting test results: 13
3.1.1 Commercial Cu raw material after different MRP: 13
3.1.2 MRP, annealing, and surface-polishing effect on the wetting of commercial Cu raw material: 14
3.2 Correlation between reactivity and wettability: 16
3.2.1 Correlation between reactivity and wettability: 16
3.2.2 Mechanism of reactive wetting: 20
3.3 Reactivity of Cu bulks and Surface Rolled Layer (SRL): 26
3.3.1 Texture coefficient (TC) and XRD analysis: 26
3.3.2 Cu bulk properties of annealed samples: 29
3.3.3 Reactivity of Cu bulk substrate: 33
3.3.4 Reactivity of Surface Rolled Layer (SRL): 36
3.4 Influence of rolling process on bulk Cu substrate and Surface Rolled Layer (SRL): 39
3.4.1 Influence of rolling process on bulk Cu substrate: 39
3.4.2 Influence of rolling process on Surface Rolled Layer (SRL): 44
4. Conclusion: 50
References: 52
Appendix (A): Prevention of electromigration-induced Cu dissolution by a high electromigration-resistance ternary Cu-Ni-Sn layer: 54
Appendix (B): Electromigration-induced failure of Ni/Cu bi-layer bond pads joined with Sn(Cu) solders: 62
Appendix (C): Dewetting retardation on Ag/Cu coated LED lead-frames during the solder immersion process: 78
Appendix (D): Ni inter-diffusion coefficient and activation energy in Cu6Sn5: 90
參考文獻 [1] K. Mori and K. Osakada, Int. J. Mech. Sci., 26, 515-525 (1984).
[2] K. Mori and K. Osakada Int. J. Numer. Meth. in Engng., 30, 1431-1440 (1990).
[3] S. W. Wen, P. Hartley, I. Pillinger and C. E. N. Sturgess, Proc.Instn Mech. Engrs., Part B, 206(B2), 133–141 (1992).
[4] M. Buat et al., J. Mater. Process. Technol., 45, 677-681 (1994).
[5] M. S. Gadala and J. Wang Int. J. Numer. Meth. Engng., 44, 1397-1428 (1999).
[6] K. S. Choi, T. G. Kang, I. S. Park, J. H. Lee, and K. B. Cha IEEE Transactions on Electronics Packaging Manufacturing, 23(1), Jan. (2000).
[7] F. G. Yost, A. D. Romig, Electronic Packaging Materials Science 3. Materials Research Society Symposium Proceedings, 108 (1988).
[8] F.G. Yost, Scr. Mater., 42, 801 (2000).
[9] N. Eustathopoulos, Acta Mater., 46, 2319 (1998).
[10] K. Landry and N. Eustathopoulos, Acta Mater., 44, 3923 (1996).
[11] K. Landry, C. Rado, R. Voitovich, and N. Eustathopoulos, Acta Mater., 45, 3079 (1997).
[12] R. Voitovich, F. Robaut and N. Eustathopoulos, Acta Mater., 54, 2205-2214 (2006).
[13] J. Chen and M.Y. Gu, J. Mater. Res., 17, 911 (2002).
[14] C.Y. Liu and K.N. Tu, J. Mater. Res., 13, 37 (1998).
[15] C.Y. Liu and K.N. Tu, Phys. Rev., E 58, 6308 (1998).
[16] E. Saiz, R.M. Cannon, and A.P. Tomsia, Acta Mater., 48, 4449 (2000).
[17] E. Saiz, A.P. Tomsia, and R.M. Cannon, Acta Mater., 46, 2349 (1998).
[18] H. Wang, H. Zhao, D. P. Sekulic and Y. Qian. J. Electronic Materials, 37, 10 (2008).
[19] F. H. Howie and E. D. Hondro, J. Master. Sci., 17 (1982)
[20] S. Kim, J. H. Jang, J. S. Lee and D. J. Duquette Electrochimica Acta, 52 5258–5265 (2007).
[21] P. Fricoteaux and J. Douglade J. of Materials Science Letters, 21, 1485-1488 (2002).
[22] O. Liao, L. Q. Zhu, H. C. Liu and W. P. Li International Journal of Minerals, Metallurgy and Materials, 17, 1 (2010).
[23] R. M. Treco and Proc., AIME Regional Conference on Reactive Metals, p.136 (1956).
[24] D. G. GioVanni, B. Riccardo, D. Mirco, L. Matteo and S. Paolo Geochimica et Cosmochimica Acta, Vol. 69, No. 16, 4073–4083 (2005).
[25] H. Hermann, Th. Schubert, W. Gruner and N. Mattern NanoStrudured Materials, Vol. 8, No. 2, 215-229 (1991).
[26] B. N. Singh, D. J. Edwards, P. Toft Journal of Nuclear Materials, 238, 244-259 (1996).
[27] S.K. Shee, S.K. Pradhan and M. De Journal of Alloys and Compounds, 265, 249–256 (1998).
[28] A. V. Bolesta and V. M. Fomin Physical Mesomecchanics, 12, 3-4, 117-123 (2009).
[29] P.M. Anderson and J.S. Carpenter Scripta Materialia, 62, 325–328 (2010).
[30] V. Subramanya Sarma, W. W. Jian, J. Wang, H. Conrad and Y. T. Zhu J. Mater. Sci., 45, 4846–4850 (2010).
指導教授 劉正毓(Chengyi Liu) 審核日期 2011-7-27 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare