博碩士論文 983204068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.220.112.210
姓名 蔡傑(Chieh Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 複合膜中界面聚合層的氣體分離性質
(Gas separation properties of interfacially polymerized layers in thin film composite membranes)
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 量子點表面改質與動物細胞標定
★ 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向★ 利用雙功能吸附基材進行蛋白復性-蛋白吸附狀態對復性的影響
★ 界面聚合之奈米過濾膜的抗氯性研究★ 以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用
★ 負電性奈米過濾膜之排鹽特性★ 金奈米粒子親水化及與DNA一對一鍵結之探討
★ 以雙重電性表面改質方式製作抗生物吸附之超過濾與奈米過濾膜★ 以表面修飾之材料控制間葉幹細胞貼附及對其往軟骨分化之影響
★ 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用★ 以三聚氰氯為單體的抗氯型奈米過濾膜
★ 鹼性胜肽抗生素indolicidin及其類似物之溶血作用機制探討★ 蛋白質特定方向固定化-以α-amylase為例
★ Indolicidin及其類似物與微脂粒交互作用之熱力學研究★ 位向性固定化葡萄糖氧化酶之新方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用薄膜來進行氣體分離是一種低耗能的技術,但高選擇性的薄膜往往通量很低,高通量的薄膜選擇性又不佳,因此如何同時提高薄膜的分離效率與氣體通量一直是研究的重心。廣泛使用於製備逆滲透及奈米過濾膜的界面聚合法,可以製作出一層薄且緊密的分離層,藉由此方法,有可能得到一個高通量且高選擇性的氣體分離薄膜,但在文獻中鮮少報導。
近幾年來有幾篇文獻,報告利用界面聚合法製作的複合膜來進行氣體分離,但大部分的研究都是在探討增加薄膜的含氮比例來提升二氧化碳/甲烷或是二氧化碳/氮氣的分離,卻很少關於最困難的氧/氮分離的報導。於是在這篇研究中,我們使用使用四種水相單體diethylenetriamine (DETA),m-phenylene diamine (m-PD) ,melamine,piperazine (PIP),兩種有機相單體1,3,5-benzenetricarbonyl chloride (TMC) ,cyanuric chloride (CC)進行界面聚合,探討單體的立體構型,反應官能基的數目,與含氮量的多寡對分離效率的影響,也探討反應時間以及單體濃度比的效應。
氧/氮分離的結果發現,薄膜的含氮量與氧/氮選擇比之間關連不大,聚合時薄膜的分子交聯程度與高分子堆疊的方式應是影響選擇比的主要原因,線性以及過度網狀交聯都不利於提高選擇比,兩相單體均為平面構型且鍵結於同一平面也容易產生缺陷,兩相單體反應官能基比為3:2且其中一單體為非平面構型者,具有高選擇比與不錯的氣體通量(如:1%PIP/1%TMC具有7.72 kg h-1 m-2 atm-1的氧氣通量,0.74 kg h-1 m-2 atm-1的氮氣通量以及選擇比10.43)。增加聚合時間對氧氣、氮氣的分離效率並沒有助益,反而會因為薄膜厚度增加而減少氣體通量,而兩相單體重量百分比為1:1時所得到的薄膜,分離效率較佳。
摘要(英) Gas separation by membrane is an energy saving separation technology. However, high selectivity membranes are often defeated by their low permeation fluxes and high flux membranes usually suffer from their low selectivity. Therefore, how to obtain a high flux and highly selective gas separation membrane is always a major research emphasis in membrane technology. Interfacial polymerization, a technique often used in RO and NF membrane fabrication, can produce a thin and dense layer on a supporting membrane. The thin film composite (TFC) membrane by interfacial polymerization should be a good candidate of high flux and high selectivity gas separation membrane. However, limited reports mentioned about the gas separation properties of TFC membranes. Although there have emerged a couple reports in the recent year about using TFC membranes for CO2/CH4 and CO2/N2 separation. The focus was on increasing membrane polarity in order to enhancing CO2 solubility. No comments were on the structure of thin layers for gas separation, particularly on O2/N2 separation. We, therefore, tried to compare the gas separation properties of many interfacial polymerized layers by selecting 4 aqueous phase monomers: diethylenetriamine (DETA), m-phenylenediamine (mPD), melamine, and pieprazine (PIP), and 2 organic phase monomers: trimethyl chloride (TMC) and cyanuric chloride (CC). We intended to study how the shape, the number of functional groups, and the nitrogen content of monomers affect membrane performance. The effects of reaction time and monomer concentration were also under investigation.
The experiment results showed that the permselectivity was not related to nitrogen content. The degree of cross-linkage and the packing of polymer chains strongly affected membrane performance. Linear polymer and over crosslinking were not favorable. Planar aqueous and organic phase monomers forming crosslinking network at the same plane created defects in the layer. We have found that the optimum ratio of reacting groups of monomers in two phases is 3:2. It could be demonstrated by the membrane synthesized by 1%PIP and 1%TMC, which had an oxygen flux of 7.72 kg h-1 m-2 atm-1 and a permselectivity of 10.43. To increase polymerization time was not beneficial to membrane selectivity. On the contrary, it decreased gas permeability by increasing membrane thickness. We also found that the 1:1 concentration ratio of monomers was required to maintain membrane selectivity.
關鍵字(中) ★ 氣體分離
★ 界面聚合
關鍵字(英) ★ gas separation
★ interfacial polymerization
論文目次 中文摘要 I
Abstract VII
圖目錄 XIII
表目錄 XV
第一章 緒論 1
1-1 研究背景 1
1-1-1 使用薄膜分離的優點 2
1-1-2 不同薄膜材料的選擇 2
1-1-3 氣體分離膜的種類 4
1-1-4 界面聚合膜之優點 5
1-1-5 氣體分離膜的應用 5
1-2 研究動機及目的 8
第二章 文獻回顧 10
2-1 簡介:氣體分離膜 10
2-2 發展史 10
2-3 氣體分離的機制及原理 13
2-3-1 薄膜構造 13
2-3-2 薄膜型態與氣體傳送之間的關係 14
2-4 氣體分離之傳送理論 18
2-4-1 氣體分離的過程 18
2-4-2 氣體分離之機制 19
2-4-3 氣體分子在薄膜中的傳送量 19
2-4-4 穿透係數(Permeability coefficient) 22
2-5-5 選擇性 (Permselectivity) 22
2-5 氣體分離膜之製備方法 24
2-6 影響界面聚合法主要因素 30
2-6-1 水相單體或有機相單體的選擇 30
2-6-2 水相溶液或有機相溶液的濃度 32
2-6-3 界面聚合反應時間 32
第三章 實驗藥品、儀器設備與流程 35
3-1 實驗藥品 35
3-2 實驗儀器設備 36
3-3 實驗方法流程 37
3-3-1 基材膜製備 37
3-3-2 Polyamide薄膜製備 38
3-3-3 實驗架構 40
3-4 薄膜性質測試 41
3-4-1 掃描式電子顯微鏡鑑定薄膜型態 (Scanning Electronic Microscope) 41
3-4-2 X射線光電子能譜 (X-ray Photoelectron Spectroscopy) 42
3-4-3 氣體通量實驗 42
3-5 高分子化學結構 44
第四章 結果與討論 47
4-1 表面與截面型態結構變化 48
4-2 氧/氮分離特性 58
4-2-1不同聚合單體合成之選擇層的氮氣通量 59
4-2-2 不同聚合單體合成之選擇層的氧/氮選擇比 61
4-2-3 不同界面聚合單體濃度對氣體分離膜通量的影響 62
4-3 分離層含氮量對氧/氮選擇性之影響 65
4-4 各種膜氧/氮分離的綜合表現 73
結論 75
參考文獻 76
參考文獻 [1] Juan Zhao, Zhi Wang, Jixiao Wang, Shichang Wang, Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization, J. Membr. Sci. 283 (2006) 346–356.
[2] Runhong Du, Amit Chakma, Xianshe Feng, Interfacially formed poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes for CO2/N2 separation, , J. Membr. Sci. 290 (2007) 19–28.
[3] Xingwei Yua, , Zhi Wanga, Zhihong Weia, Shuangjie Yuana, Juan Zhaoa, Jixiao Wanga, Shichang Wang, Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture, J. Membr. Sci. 362 (2010) 265–278.
[4] W. S. Winston Ho, K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, (1992).
[5] R. W. Baker, E. L. Cussler, W. Eykamp, W. J. Koros, R. L. Riley, H. Strathmann , Membrane Separation System-a Research Need Assessment, US Department of Energy, Washington, DC, April,(1990).
[6] R. W. Baker, E. L. Cussler, W. Eykamp, W. J. Koros, R. L. Riley, H.Strathmann, Membrane Separation System: Recent Developments and Future Directions, Noyes Data Corp., Park Ridge, NJ., (1991) 34-35.
[7] R. W. Baker, Membrane Technology and Applications, McGraw-Hill, Menlo Park, California (2000).
[8] R. W. Spillman, W. R. Grace and Co. Columbia, Economics of Gas Separation Membranes, Chemistry Engineering Progress, Vol. 85, (1989) 41-62.
[9] R. Rautenbach, R. Albrecht, Memebrane Process, John Wily & Sons Ltd.,New York, (1989).
[10] R. E. Kesting and A. K. Fritzcsche, Polymeric Gas Separation membrane, John Wiley &Sons, New York, (1993).
[11] R. J. Gardner, R. A. Crane and J. F. Hannan, Chem. Eng. Prog., Vol. 73(11), (1977) 76.
[12] W. A. Bollinger, D. L. MacLean, and R. S. Narayan, Chem. Eng. Prog., Vol.78(10), (1982) 27.
[13] B. D. Freeman, I. Pinnau, Polymer Membrane for Gas and Vapor Separation, American Chemical Society, Chap.1, (1999).
[14] 王建智,製膜溶劑對聚(1-三甲基矽烷-1-丙炔)膜之氣體滲透性隨時間下降行為的影響,碩士論文,元智大學化學工程所,桃園,(2001)
[15] R. Prasad, R. L. Shaner, and K. J. Doshi, In Polymeric Gas Separation Membrane, CRC Press, Boca Raton, FL, (1994).
[16] T. Matsuura, Synthetic Membrane and Membrane Separation Processes,Chap 10, CRC Press, Boca Raton, (1993) 383.
[17] 郭文正、曾添文,薄膜分離,高立書局,臺北,第六章,(1988).
[18] D. R. Paul and Y. P. Yampol’skii, Polymeric Gas Separation Membranes, CRC Press, (1994).
[19] H. K. Lonsdale, The Growth of Membrane Technology, J. Membr. Sci., Vol. 10, (1982) 81-88.
[20] L. M. Robeson, Correlation of Separation Factor Versus Permeability for Polymeric Membranes, J. Membr. Sci., Vol. 62, (1991) 165-185.
[21] L. M. Robeson, Polymer Membranes for Gas Separation, Current Opinion in Solid State and Materials Science, Vol. 4, (1999) 549-552.
[22] L. M. Robeson, Correlation of Separation Factor Versus Permeability for Polymeric Membranes, J. Membr. Sci., Vol. 62, (1991) 165-185.
[23] Z. Wang, T. Chen and J. Xu, Gas Transport Properties of Novel Cardo Poly(aryl ether ketone)s with Pendant Alkyl Groups, Macromolecules, Vol.33, (2000) 5672-5679.
[24] C. M. Zimmerman and W. J. Koros, Polypyrrolones for Membrane Gas Separations. I. Structure Comparison of Gas Transport and Sorption Properties, J. Polym. Sci., Polym. Phys., Vol. 37, (1999) 1235-1249.
[25]Z. Wang, T. Chen and J. Xu, Gas Transport Properties of Novel Cardo Poly(aryl ether ketone)s with Pendant Alkyl Groups, Macromolecules, Vol.33, (2000) 5672-5679.
[26] Z. Wang, T. Chen and J. Xu, Novel Poly(aryl ether ketone)s Containing Various Pendant Groups. II. Gas-Transport Properties, J. Appl. Polym. Sci.,Vol. 64, (1997) 1725-1732.
[27] J. Zhang and X. Hou, The Gas Permeation Property in Trimethylsilyl-substituted PPO and Triphenylsilyl-substituted PPO, J.Membr. Sci., Vol. 97, (1994) 275-282.
[28] J. H. Kim, S. B. Lee and S. Y. Kim, Incorporation Effects of Fluorinated Side Groups into Polyimide Membranes on Their Physical and Gas Permeation Properties, J. Appl. Polym. Sci., Vol. 77, (2000) 2756-2767.
[29] S. Takahashi, M. Yoshida, M. Asano, T. Tanaka and T. Nakagawa, Effect of Heavy-Ion Irradiation on the Gas Permeability of Poly(ethylene terephthalate) (PET) Membranes, J. Appl, Polym. Sci., Vol. 82, (2001) 206-216.
[30] J. Won, M. H. Kim, Y. S. Kang, H. C. Park, U. Y. Kim, S. C. Choi and S. K. Koh, Surface Modification of Polyimide and Polysulfone Membranes by Ion Beam for Gas Separation, J. Appl, Polym. Sci., Vol. 75, (2000) 1554-1560.
[31] C. T. Wright and D. R. Paul, Gas Sorption and Transport in UV-Irradiated Poly(2,6-dimethyl-1,4-phenylene oxide) Films, J. Appl, Polym. Sci., Vol. 67, (1998) 875-883.
[32] M. H. Kim, J. H. Kim, C. K. Kim, Y. S. Kang, H. C. Park and J. O. Won, Control of Phase Separation Behavior of PC/PMMA Blends and Their Application to the Gas Separation Membranes, J. Polym. Sci., Polym. Phys.,Vol. 37, (1999) 2950-2959.
[33] F. A. Ruiz-Trevino and D. R. Paul, Gas Permselectivity Properties of High Free Volume Polymers Modified by a Low Molecular Weight Additive, J.Appl, Polym. Sci., Vol.68, (1998) 403-415.
[34] S. H. Chen, S. S. Lin, D. J. Chang and J. S. Chang, Gas Transport Properties of CoAlPO5/PC Membranes, J. Appl. Polym. Sci., Vol. 77, (2000) 89-95.
[35] A. B. Fuertes, Adsorption-selectivity Carbon Membrane for Gas Separation, J. Membr. Sci., Vol. 177, (2000) 9-16.
[36] R. W. Baker, E. L. Cussler, W. Eykamp,W. J koros, R. L. Riley and H. Strathmann, Membrane Separation System-Recent Developments and Future Directions, Noyes Data Corp., Park Ridge, NJ., (1991) 368-571.
[37] L. M. Robeson, W. F. Burgoyne, M. Langsam, A. C. Savoca and C. F. Tien, High Performance Polymers for Membrane Separation, Polymer, Vol. 35, (1994) 4970-4978.
[38] Chang Do Ihm and Son Ki Ihm, Pervaporation of Water-ethanol Mixtures Through Sulfonated Polystyrene Membranes Prepared by Plasma Graftpolymerization, J. Membr. Sci., Vol. 98, (1995) 89-96.
[39] 賴君義,陳世雄,高分子氣體分離膜,化工技術,第五卷,第五期, (1997) 第137~143頁。
[40] R. W. Baker, E. L. Cussler, W. Eykamp, W. J koros, R. L. Riley and H.Strathmann, Membrane Separation System-Recent Developments and Future Directions, Noyes Data Corp., Park Ridge, NJ. , (1991) 189-238.
[41] J. Crank, The Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford, (1975).
[42] S. G. Anshu and W. J. Koros, Energetic and Entropic Contributes to Mobility Selectivity in Glassy Polymers for Gas Separation Membranes, Ind. Eng. Chem. Res., 38, (1999) 3647-3654.
[43] T. Matsuura, Synthetic Membranes and Membrane Separation Processes, CRC Press, Inc., Canada, (1994).
[44] S. Sircar and W. C. Kratz, A Pressure Swing Adsorption Process for Production of 23-50% Oxygen-enriched Air, Separation Science and Technology, Vol. 23 (4-5), (1988) 437-450.
[45] A. F. Ismail and L. I. B. David, A Review on The Latest Development of Carbon Membranes for Gas Separation, J. Membr. Sci., Vol. 193, (2001) 1-18.
[46] W. R. Vieth, Diffusion In and Through Polymers, Oxford University Press, New York, (1991) 73-78.
[47] Tang, B., Xu, T., and Wu, P., Preparation of Thin Film Composite Membrane by Interfacial Polymerization Method, Progress In Chemistry, vol. 19, no. 9, (2007) 1428-1435
[48] R. H. Du, J. S. Zhao, Properties of Poly (N,N-dimethylaminoethyl methacrylate)/polysulfone Positively Charged Composite Nanofiltration Membrane, J. Membr. Sci., vol. 239, no. 2, Aug 15, (2004) 183-188.
[49] R. H. Du, J. S. Zhao, Positively Charged Composite Nanofiltration Membrane Prepared by Poly(N,N-dimethylaminoethyl methacrylate)/polysulfone, J.Appl, Polym. Sci., vol. 91, no. 4, Feb 15, (2004) 2721-2728.
[50] J. Miao, G. H. Chen, C. J. Gao, A Novel Kind of Amphoteric Composite Nanofiltration Membrane Prepared from Sulfated Chitosan (SCS), Desalination, vol. 181, no. 1-3, Sep 5, (2005) 173-183.
[51] L.M. Robeson, Correlation of Separation Factor Versus Permeability for Polymeric Membranes, J. Membr. Sci. 62 (1991) 165.
[52] W. J. Koros and R. T. Chern, Separation of Gaseous Mixtures Using Polymer Membranes, Handbook of Separation Process Technology, Ronald W. Rousseau. Ed., (1987) 862-935.
[53] J. Crank, The Mathematics of Diffusion, Academic Press, New York, (1968) 1-26.
[54] 胡蒨傑,魏大欽,科學發展,2008年9月,429期,32 ~ 37頁。
[55] P. W. Morgan, S. L. Kwolek, Interfacial Polycondensation. II. Fundamentals of Polymer Formation at Liquid Interfaces, Journal of Polymer Science Part A: Polymer Chemistry, 34, (1959) 531-559
[56] 劉新明,崔元臣,界面聚合及其應用發展,化學研究,第17卷第1期, (2006) 101-104
[57] 童國倫,呂坤宗,李雨霖,奈米過濾的發展及其應用, 化工, vol. 51, no.3, (2004) 26-36
[58] P. Vandezande, L. E. M. Gevers, I. F. J. Vankelecom, Solvent Resistant Nanofiltration: Separating on a Molecular Level, Chemical Society Reviews, vol. 37, no. 2, (2008) 365-405.
指導教授 阮若屈、胡蒨傑
(Ruoh-Chyu Ruaan、Chien-Chieh Hu)
審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明