博碩士論文 983204065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.144.93.34
姓名 曾昱中(Yu-chung Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米尺度鎳金屬點陣與矽碳單晶基材之界面反應研究及規則有序矽單晶奈米結構陣列之製備
(Interfacial Reactions of Periodic Ni Nanodot Arrays on Epitaxual Si:C Layers and The Fabrication of Single Crystalline Silicon Nanostructure Arrays.)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中分別利用自然滴製法與LB-like法在矽碳及矽晶基材上製備出大面積排列規則的PS球陣列結構作為模板(Template)。
 在蒸鍍Ni金屬與移除PS球模板後,可製備出大面積規則排列且尺寸均一之鎳金屬奈米點陣列。鎳金屬點退火至350 ℃時,低電阻相NiSi相已完全形成於(001)Si0.976:C0.024基材上。而當鎳金屬點退火至500 ℃時,鎳矽化物奈米點仍主要為低電阻之NiSi相,需提高退火溫度至600 ℃才會完全轉換成高電阻NiSi2相。此結果證實碳的摻雜可增加低電阻NiSi點陣之熱穩定性。而當鎳金屬奈米點陣之退火熱處理溫度升高至900 ℃時,則會發現大量奈米線結構的產生,此奈米線結構主要是由矽、氧成分所組成之非晶質SiOX奈米線,其大小約為14-20 nm,並推測其生長為固-液-固(Solid-Liquid-Solid, SLS)之成長機制。
 在製備大面積規則排列矽單晶奈米環結構之研究方面,本研究也首度結合奈米球模板與多重選擇性化學濕式蝕刻技術,成功在矽晶基材上製備出環高與環寬可控制之規則有序矽單晶奈米環狀結構陣列。
摘要(英) The present study has demonstrated that well-ordered arrays of polystyrene(PS) nanosphere were successfully fabricated on (001)Si and (001)Si0.976C0.024 substrates by using the LB-like and/or drop-coating technique. The self-assembled PS nanosphere arrays were used as the deposition templates.
 After Ni thin film deposition and subsequent removal of the PS nanosphere templates, periodic Ni nanodot arrays were formed. For the samples annealed at 350℃, low-resistivity NiSi nanodots were observed to form on the (001)Si0.976C0.024 substrate. Furthermore, even after annealing at 500℃, the low-resistivity NiSi phase wewe still detected in the Ni nanodots/Si:C sample. As the annealing temperature was increased to 600℃, the nanodots grown on (001)Si0.976C0.024 substrates were then transformed to high- resistivity NiSi2 phase completely. The observed results revealed that the phase stability of NiSi nanodots was significantly improved by the addition of C to Si substrate. For the Ni nanodot samples further annealed at 900 ℃, many SiOx nanowires of 14-20 nm in diameter were observed to grow from the NiSi2 nanodot regions. The growth process of amorphous SiOx nanowires could be explained by the solid–liquid–solid (SLS) mechanism.
 By combining the nanosphere template and selective chemical etching, large-area size and height-tunable Si nanoring-like nanostructure arrays were successfully fabricated on (001)Si substrates.
關鍵字(中) ★ 矽碳基材
★ 奈米環
★ 鎳矽化物
★ 奈米點陣
關鍵字(英) ★ Si:C substrate
★ Silicide
★ Nanodot
★ Nanoring
論文目次 中文摘要.................................................i
英文摘要................................................ii
誌謝...................................................iii
圖目錄.................................................vii
表目錄.................................................xii
第一章 簡介..............................................1
1-1 前言.................................................1
1-2 金屬矽化物...........................................2
1-2-1 金屬矽化物的應用及製程.............................3
1-2-2 鎳、鈷與鈦金屬矽化物...............................4
1-3 矽碳元件.............................................5
1-3-1 矽碳元件應用原理...................................6
1-3-2 矽碳元件中之金屬接觸矽化反應.......................6
1-4 微影製程技術.........................................7
1-4-1 掃描探針式微影術...................................7
1-4-2 X-ray微影術.......................................8
1-4-3 電子束微影術.......................................8
1-5 微奈米球微影術.......................................9
1-5-1 自組裝簡介.........................................9
1-5-2 微奈米球微影術的發展..............................10
1-5-3 奈米球自組裝技術..................................10
1-5-3-1 自然滴製法(Drop Coating)......................11
1-5-3-2 旋轉塗佈法(Spin Coating)......................11
1-5-3-3 電場促進自組裝技術(Electrophoretic Deposition, EPD)....................................................12
1-5-4 微奈米球微影術製備奈米結構........................13
1-5-4-1 金屬薄膜沉積製程技術..........................14
1-6 矽基蝕刻技術........................................15
1-6-1 濕式蝕刻..........................................15
1-6-1-1 矽晶基材蝕刻技術..............................15
1-6-2 乾式蝕刻..........................................16
1-6-3 利用蝕刻技術製備多樣性奈米結構....................16
1-7 研究動機與目標......................................17
第二章 實驗步驟.........................................20
2-1 微奈米球模版之製備..................................20
2-1-1 基材前處理........................................20
2-1-2 奈米球膠體溶液配製................................21
2-1-3 自組裝製備奈米球陣列..............................22
2-2 大面積鎳金屬矽化物奈米點陣列之製備..................22
2-2-1 金屬薄膜蒸鍍......................................23
2-2-2 奈米球舉離........................................23
2-2-3 退火熱處理........................................23
2-3 大面積有序矽單晶奈米環陣列結構之製備................24
2-3-1 反應性離子蝕刻控制奈米球模板球徑大小..............24
2-3-2 金屬薄膜沈積與奈米球舉離..........................24
2-3-3 退火熱處理........................................25
2-3-4 選擇性化學濕式蝕刻................................25
2-4 使用儀器及特性分析..................................25
2-4-1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)25
2-4-2 原子力顯微鏡(Atomic Force Microscopy, AFM)........25
2-4-3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)
與X光能量散佈光譜儀(EDS)................................26
第三章 結果與討論.......................................27
3-1單層奈米球陣列模板製備......................................................27
3-1-1 自然滴製法........................................27
3-1-2 LB-like法.........................................28
3-2 大面積鎳金屬薄膜及奈米尺度鎳金屬點陣與矽碳單晶基材之界面反應研究................................................29
3-2-1 鎳金屬薄膜與(001)Si及(001)Si0.976C0.024基材之界面反應29
3-2-2 在(001)Si:C基材上生成奈米尺度鎳矽化物點陣之形貌觀察31
3-2-3 鎳金屬奈米點陣與(001)Si0.976C0.024基材之界面反應..32
3-3 (001)Si基材上製備大面積矽單晶奈米環結構陣列.........36
3-3-1 點狀及環狀矽單晶奈米結構陣列之形貌及尺寸控制與觀察37
第四章 結論.............................................42
參考文獻................................................45
參考文獻 [1] T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale selective-area epitaxl growth of Si using an ultrathin SiO2/Si3Ni4 mask patterned by an atomic force microscope,” Appl. Phys. Lett. 77 (2000) 3917-3919.
[2] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered magnetic nanostructures: fabrication and properties,” J. Magn. Magn. Mater. 256 (2003) 449-501.
[3] W. Ma, D. Hesse, and U. Gösele, “Formation of ferroelectric perovskite nanostructure patterns using latex sphere monolayers as masks: an ambient gas pressure effect during pulsed laser deposition,” small 1 (2005) 837–841.
[4] N. Li and M. Z. Allmang, “Size-tunable Ge nano-particle arrays patterned on Si substrates with nanosphere lithography and thermal annealing,” J. Appl. Phys. 41 (2002) 4626–4629.
[5] Q. Yan, F. Liu, L. Wang, J. Y. Lee, and X. S. Zhao, “Drilling nanoholes in colloidal spheres by selective etching,” J. Mater. Chem. 16 (2006) 2132–2134.
[6] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17 (2005) 1507-1511.
[7] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F. Tash, “Composite TiSi2/n+ poly-Si low-resistivity gate electrode and interconnect for VLSI device technology,” IEEE Trans. Electron Device 29 (1982) 547-553.
[8] M. A. Nicolet and S. S. Lau (1983) “Materials Pocess and Characterization Ed,” N. G. Einspruch, G. R. Larrabee (Academic, New York) p.329-464.
[9] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.18-19.
[10] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.19-20.
[11] R. W. Mann, L. A. Clevenger, P. D. Agnello, and F. R. White, “Silicides and local interconnections for high performance VLSI applications,” IBM Journal of Research and Development 39 (1995) 403-417.
[12] 林鴻志,「深次微米閘極技術之發展與未來驅勢(II)」,奈米通訊,第五卷,第三期。
[13] M. H. Wang and L. J. Chen, “Phase formation in the interfacial reactions of ultrahigh vacuum deposited Titanium thin films on (111)Si,” J. Appl. Phys.(USA) 71 (1992) 5918-5925.
[14] R. Beyers and R. Sinclair, “Metastable phase formation in Titanium-Silicon thin films,” J. Appl. Phy. 57 (1985) 5240-5245.
[15] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of resistance behavior in Ti and Ni-salicided polysilicon films,” IEEE Tran. Electron Devices ED-41 (1994) 2305-2317.
[16] J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2,” IEEE Tran. Electron Devices, ED-38 (1991) 262.
[17] K. Fukasaku, A. Ono, T. Hirai, Y. Yasuda, N. Okada, S. Koyama, T. Tamura, Y. Yamada, T. Nakata, M. Yamana, N. Ikezawa, T. Matsuda, K. Arita, H. Nambu, A. Nishizawa, K. Nakabeppu, and N. Nakamura, “UX6-100 nm generation CMOS integration technology with Cu/low-k interconnect,” ULSI Device Dev. Div. (2002) 64-65.
[18] K. Inoue, K. Mikagi, H. Abiko and T. Kikkawa, “A new Cobalt salicide technology for 0.15 μm CMOS using high-temperature sputtering and in-situ vacuum annealing,” IEDM Tech. Dig. 45 (1995) 445-448.
[19] K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki and T. Sugii, “Leakage mechanism and optimized conditioms of Co salicide process for deep-submicron CMOS devices,” Proc. IEDM 45 (1995) 449-452.
[20] Q. Z. Hong, W. T. Shiau, H. Yang, J. A. Kittl, C. P. Chao, H. L. Tsai, S. Krishnan, I. C. Chen, and R. H. Havemann, “CoSi2 with low diode leakage and low sheet resistance at 0.065 μm gate length,” Proc. IEDM 97 (1997) 107-110.
[21] L.J. Chen, (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.88.
[22] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 formation through SiO2,” Thin Solid Films 386 (2001) 19-26.
[23] K. Maex, “Silicides for integrated circuits: TiSi2 and CoSi2,” Mater. Sc. Eng. R 11 (1993) 53-153.
[24] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.96-97.
[25] A. Lauwers, P. Besser, T. Gutt, A. Satta, M. De Potter, R. Lindsay, N. Roelandts, F. Loosen, S. Jin, H. Bender, M. Stucchi, C. Vrancken, B. Deweerdt, and K. Maex, “Comparative study of Ni-Silicide and Co-Silicide for sub 0.25-μm technologies,” Microelectronic Engineering. 50 (2000) 103-116.
[26] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.98-99.
[27] T. Ernst, F. Ducroquet, J. M. Hartmann, O. Weber, V. Loup, R. Truche, A. M. Papon, P. Holliger, B. Previtali, A. Toffoli, J. L. Di Maria, and S. Deleonibus, “A new Si:C epitaxial channel nMOSFET architecture with improved drivability and short-channel characteristics,” VLSI Symp. Tech. Dig. (2003) 51–52.
[28] K. -W. Ang, K. -J. Chui, V. Bliznetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra, and Y. -C. Yeo, “Enhanced performance in 50 nm n-MOSFETs with silicon-carbon source/drain regions,” IEDM Tech.Dig. (2004) 1069–1071.
[29] H. J. Osten, G. Lippert, J. P. Liu, and D. Kruger, “Influence of Carbon incorporation on dopant surface segregation in molecular-beam epitaxial growth of silicon,” Appl. Phys. Lett. 77 (2000) 2000–2002.
[30] 林宏年,呂嘉裕,林鴻志,黃調元,「局部與全面形變矽通道(strained Si channel) 互補式金氧半(CMOS) 之材料、製程與元件特性分析(I)」,奈米通訊,第十二卷,第一期,44~49頁。
[31] M. Chu, Y. Sun, U. Aghoram, S. E. Thompson, “Strain: asolution for higher carrier mobility in nanoscaleMOSFETs,”Annual Review of Materials Research 39 (2009) 203-229.
[32] Wee Chee, S. Maikop, and C. -Y. Yu, “Mobility-enhancement technologies,” Circuits and Devices Magazine, IEEE 21 (2005) 21-36.
[33] S. Thompson, G. Sun, K. Wu, J. Lim, and T. Nishida, “Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs,” IEDM Tech. Dig. (2004) 221-224.
[34] O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima, “Improvement in NiSi/Si contact properties with C-implantation,” Microelectron. Eng. 82 (2005) 479-484.
[35] V. Machkaoutsan, S. Mertens, M. Bauer, A. Lauwers, K. Verheyden, K. Vanormelingen, P. Verheyen, R. Loo, M. Caymax, S. Jakschik, D. Theodore, P. Absil, S. G. Thomas, and E. H. A. Granneman, “Improved thermal stability of Ni-silicides on Si:C epitaxial layers,” Microelectron. Eng. 84 (2007) 2542-2546.
[36] S. W. Lee, S. H. Huang, S. L. Cheng, P. S. Chen, and W. W. Wu, “Ni silicide formation on epitaxial Si1−yCy/(001) layers,” Thin Solid Films 518 (2010) 7394-7397.
[37] C. Chen, Electron Beam Lithography for Nanoelectronics,奈米設備與檢測研討會(http://nano-taiwan.sinica.edu.tw/2003NanoConferences.ASP)
[38] A. J. Haes, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: self-assembled photonic and magnetic materials,” Mat. Res. Soc. Symp. 636 (2001) 1-6.
[39] M. Ratner and D. Ratner, “Nanotechnology: a gentle introduction to the next big idea,” Chapter 4, 2003, Prentice Hall.
[40] 廖明吉,「0.1微米世代的微影解決方法奈米通訊」,第五卷,第四期,28~32頁。
[41] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion species and energy control of finely focused RBs for maskless in situ microfabrication processes,” Nucl. Instrum. Methods B39 (1989) 515-520.
[42] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[43] G. Horneck and B. K. Christa (2001) “Astrobiology: the quest for the conditions of life, part vcomplexity and life, molecular self-assembly and the origin of life,” Spriger press, p.360-372.
[44] G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295 (2002) 2418-2421.
[45] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silicaopals,” Adv. Mater. 12 (2000) 1940-1944.
[46] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-packed hemispherical microlens Array from two-dimensional ordered polymeric microspheres,” Langmuir 22 (2006) 7358-7363.
[47] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Redox-tunable defects in colloidalphotonic crystals,”Adv. Mater. 17 (2005) 2455–2458.
[48] J. Dutta and H. Hofmann, “Self-organization of colloidal nanoparticles,” Encyclopedia of Nanosci. And Nanotech. X (2003) 1–23.
[49] F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding self-assembled nanosphere patterns,” Chem. Phys. Lett. 408 (2005) 241–246.
[50] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of frmation of two-dimensional crystals from latex particles on substrates,” Langmuir 8 (1992) 3183-3190.
[51] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, and K. Nagayama, “Capillary meniscus interactions between colloidal particles attached to a liquid-fluid interface,” J. Colloid Interface Sci. 151 (1992) 79-94.
[52] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, and K. Nagayama, “Energetical and force approaches to the capillary interactions between particles attached to a liquid-fluid interface,” J. Colloid Interface Sci. 155 (1993) 420-437.
[53] P. A. Kralchevsky and K. Nagayama, “Capillary forces between colloidal particles,” Langmuir 10 (1994) 23-36.
[54] K. Nagayama, “Two-dimensional self-assembly of colloids in thin liquid films,” Colloids Surf. A 109 (1996) 363-374.
[55] H. W. Deckman, and J. H. Dunsmuir, “Natural lithography," Appl. Phys. Lett. 41 (1982) 377-379.
[56] J. C. Hulteen, and R. P. van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[57] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex-particles on substrates,” Langmuir 8 (1992) 3183-3190.
[58] R. Micheletto, H. Fukuda , and M. Ohtsu, "A simple method for the production of a two-dimensional, ordered array of small latex particles," Langmuir 11 (1995) 3333-3336.
[59] J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
[60] R. P. V. Duyne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[61] V. Ng, Y. V. Lee, B. T. Chen, and A. O. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-Assembly techniques,” Nanotechnology 13 (2002) 554-558.
[62] D. Wang and H. Mohwald, “Rapid fabrication of binary colloidal crystals by stepwise spin-coating,” Adv. Mater. 16 (2004) 244-247.
[63] F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid monolayers as versatile lithographic masks,” Langmuir 13 (1997) 2983-2987.
[64] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17 (2005) 1507-1511.
[65] R. Xie and X. Y. Liua, “Epitaxial assembly and ordering of two-dimensional colloidal crystals,” Appl. Phys. Lett. 92 (2008) 083106-1-3.
[66] X. H. Xia, J. P. Tu, J. Y. Xiang, X. H. Huang, X. L. Wang, and X. B. Zhao, “Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries,” Journal of Power Sources 195 (2010) 2014-2022.
[67] H. Yan, Y. Yang, Z. Fu, B. Yang, L. Xia, S. Fu, and F. Li, “Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrodeposition,” Electrochemistry Communications 7 (2005) 1117-1121.
[68] M. A. Ghanem, P. N. Bartlett, P. de Groot, and A. Zhukov, “A double templated electrodeposition method for the fabrication of arrays of metal nanodots,” Electrochemistry Communications 6 (2004) 447-453.
[69] Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. Ting, and P. Sheng, “Two-and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating,” Adv. Mater. 16 (2004) 417-422.
[70] S. Zhu and Y. Fu, “Fabrication and characterization of nanostructured metallic arrays with multi-shapes in monolayer and bilayer,” J. Nanopart. Res. 12 (2010) 1829-1835.
[71] J. C. Hulteen, and R. P. Van Duyne, “Nanosphere lithpography: A materials general fabrication process for periodic particle array surface,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[72] A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 4 (2005) 439-444.
[73] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4 (2004) 2223-2226.
[74] F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-density arrays of ferromagnetic nanorings on macroscopic areas,” Adv. Mater. 16 (2004) 2155-2159.
[75] D. Byrne, A. Schilling, J. F. Scott , and J. M. Gregg, “Ordered arrays of lead Zirconium Titanate,” Nanotechnology 19 (2008) 165608-1-5.
[76] Y. Zhang, X. Wang, and Y. Wang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452 (2008) 473-477.
[77] K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic crystals based on periodic arrays of aligned carbon nanotubes,” Nano Lett. 3 (2003) 13-18.
[78] K. H. Park, S. Lee, K. H. Koh, R. L. KBK, and T. W. Milne, “Advanced nanosphere lithography for the areal-density variation of periodic arrays of vertically aligned carbon nanofibers,” J. Appl. Phys. 97 (2005) 024311-024314.
[79] Y. Li, E. J. Lee, W. Cai, K. Y. Kim, and S. O. Cho,“Unconventional method for morphology-controlled carbonaceous nanoarrays based on electron irradiation of a polystyrene colloidal monolayer,” ACSNano 2 (2008) 1108-1112.
[80] Y. Li, N. Koshizaki, Y. Shimizu, L. Li, S. Y. Gao, and T. Sasaki, “Unconventional lithography for hierarchial micro/nanostructure arrays with well-aligned 1D crystalline nanostructures: Design and creation based on the colloidal monolayer,” ACS Appl. Mater. Inter. 1 (2009) 2580-2585.
[81] C. M. Zhou and D. Gall, “Surface patterning by nanosphere lithography for layer growth with ordered pores,” Thin Solid Films 516 (2007) 433-437.
[82] M. A. Green (1982) “Solar Cells: Operating pinciples, technology, and system application,” Prentice-Hall Inc., Englewood Cliffs, NJ, p.164.
[83] R. A. Arndt, J. F. Allison, J. G. Haynos, A. Meulenberg, “Optical properties of the COMSAT non-reflective cell,” Proceedings of 11th IEEE International Specialist Conference, New York (1975) 40.
[84] P. Verlinden, O. Evrard, E. Mazy, A. Crahay, “The surface texturization of solar cells: A new method using v-grooves with controllable sidewall angles,” Sol. Energy Mater. Sol. Cells 26 (1992) 71-78.
[85] D. L. King and Buck, “Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells,” Proceedings of 22nd IEEE International Photovoltaic Specialists Conference, Las Vegas (1991) 303-308.
[86] U. Gangopadhyay, K. H. Kim, S. K. Dhungel, U. Manna, P. K. Basu, M. Banerjee, H. Saha and J. Yi, “A novel low cost texturization method for large area commercial mono-crystalline silicon solar cells,” Solar Energy Materials and Solar Cells 90 (2006) 3557–3567.
[87] I. Zubel and M. Kramkowska, “Development of etch hillocks on different Si(hkl) planes in silicon anisotropic etching,” Surf. Sci. 602 (2008) 1712–1721.
[88] B. Wang, S. J. Chua, and J. Teng, “Novel 2D ordered arrays of nanostructures fabricated through silica masks formed by bilayer colloidal crystals as templates,” IEEE 2 (2005) 717-720.
[89] S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and nanobored particle arrays sculpted using colloidal lithography,” Adv. Funct. Mater. 16 (2006) 33-40.
[90] S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle arrays with patterned pores by nanomachining with colloidal masks,” J. Am. Chem. Soc. 127 (2005) 1636-1637.
[91] A. Sinitskii, S. Neumeier, J. Nelles, M. Fischler, and U. Simon, “Ordered arrays of silicon pillars with controlled height and aspect ratio,” Nanotechnology 18 (2007) 305307-1~305307-6.
[92] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9 (2009) 279-282.
[93] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. Zhao, P. Sun, F. Song, J. Wan, and K. Chen, “Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography,” Nanotechnology 19 (2008) 135308-1~135308-5.
[94] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by langmuir-blodgett assembly and etching,” Appl. Phys. Lett. 93 (2008) 133109-1~133109-3.
[95] Z. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density,” Adv. Mater. 19 (2007) 744–748.
[96] C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105 (2001) 5599-5611.
[97] J. H. He, Y. L. Chueh, W. W. Wu, S. W. Lee, L. J. Chen, and L. J. Chou, “The growth of SiGe quantum rings in Au thin filmson epitaxial SiGe on silicon,” Thin Solid Films 469-470 (2004) 478-482.
[98] J. H. He, W. W. Wu, Y. L. Chueh, C. L. Hsin, L. J. Chen, and L. J. Chou, “Formation and evolution of self-assembled crystalline Si nanoringson (001)Si mediated by Au nanodots,”Appl. Phys. Lett. 87 (2005) 223102-1~223102-2.
[99] J. T. Robinson, P. G. Evans, J. A. Liddle, and O. D. Dubon, “Chemical nanomachining of silicon by gold-catalyzed oxidation,” Nano Lett. 7 (2007) 2009-2013.
[100] M. R. Baklanov, I. A. Badmaeva, R. A. Donaton, L. L. Sveshnikova, W. Storm, and K. Maex, “Kinetics and mechanism of the etching of CoSi2 in HF-based solutions,” J. Electrochem. Soc. 143 (1996) 3245-3251.
[101] S. Y. Zhu, G. P. Ru, C. Detavernier, R. L. Van Meirhaeghe, E. Cardon, and B. Z. Li, “The dependence of the etching property of CoSi2 films in diluted HF solutions on the formation conditions,” Appl. Surf. Sci. 178 (2001) 44-49.
[102] X. Fan, G. Zeng, C. L. Bounty, J. E. Bowers, E. Croke, and C. C. Ahn, “A SiGeC/Si superlattice microcoolers,” Appl. Phys. Lett. 78 (2001) 1580-1582.
[103] H. C. Chen, C. W. Wang, S. W. Lee, and L. J. Chen, “Pyramid-shaped Si/Ge superlattice quantum dots with enhanced photoluminescence properties,” Adv. Mater. 18 (2006) 367-370.
[104] H. -W. Kim, S. Choi, S. Hong, H. K. Jung, G. -D. Lee, E. Yoon, and C. S. Kim, “Effect of C incorporation on relaxation of SiGe/Si,” Appl. Phys. Lett. 93 (2008) 221902-221903.
[105] W. -S. Liao, Y. -G. Liaw, M. -C. Tang, K. -M. Chen, S. -Y. Huang, C. -Y. Peng, C. , and W. Liu, “PMOS hole mobility enhancement through SiGe conductive channel and highly compressive ILD-SiNx stressing layer,” IEEE Electron Device Lett. 29 (2008) 86-88.
[106] R. W. Mann, L. A. Clevenger, P. D. Agnello, and F. R. White, “Silicides and local interconnections for high performance VLSI applications,” IBM Journal of Research and Development 39 (1995) 403-417.
[107] M. Marquez and B. P. Grady, “The use of surface tension to predict the formation of 2d arrays of latex spheres formed via the langmuir-blodgett-Like technique,” Langmuir 20 (2004) 10998-11004.
[108] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, and H. Chen,“Fabrication of periodic nickel silicide nanodot arrays using nanosphere lithography,”Thin Solid Films 494 (2006) 307–310.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2011-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明