參考文獻 |
1.1 G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics 38, (1965).
1.2 M. Y. Tairov, and V. F. Tsvetkov, “Handbook on Electro technical Materials” Eds. Y. V. Koritskii, V. V. Pasynkov, and B. M. Tareev, Vol.3, Sec.19, "Semiconductor Compounds AIV BIV", Energomashizdat, Leningrad (1988) p. 446.
1.3 M. Berti, D. D. Salvador, A. V. Drigo, F. Romanato, J. Stangl, S. Zerlauth, F. Schäffler, and G. Bauer, “Lattice Parameter in Si1-yCy Epilayers: Deviation from Vegard’s Rule,” Appl. Phys. Lett. 72, 1602-1604 (1998).
1.4 S. M. Koh, X. Wang, K. Sekar, W. Krull, G. S. Samudra, and Y. C. Yeo, “Silicon-Carbon Formed Using Cluster-Carbon Implant and Laser-Induced Epitaxy for Application as Source/Drain Stressors in Strained n-Channel MOSFETs,” J. Electrochem. Soc. 156, H361-H366 (2009).
1.5 P. C. Kelires, “Short-Range Order, Bulk Moduli, and Physical Trends in c-Si1-xCx Alloys,” Phys. Rev. B, 55, 8784 (1997).
1.6 F. Andrieu, O. Weber, T. Ernst, O. Faynot, and S. Deleonibus, “Strain and Channel Engineering for Fully Depleted SOI MOSFETs towards the 32 nm Technology Node,” Microelectron. Eng. 84, 2047-2053 (2007).
1.7 S. H. Olsen, P. Dobrosz, R. M. B. Agaiby, Y. L. Tsang, O. Alatise, S. J. Bull, A. G. O’Neill, K. E. Moselund, A. M. Ionescu, P. Majhi, D. Buca, S. Mantl, and Howard Coulson, “Nanoscale Strain Characterisation for Ultimate CMOS and Beyond,” Materials Science in Semiconductor Processing, 11, 271-278 (2008).
1.8 M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, “Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs,” Annu. Rev. Mater. Res. 39, 203-229 (2009).
1.9 J. Jung, M. L. Lee, S. Yu, E. A. Fitzgerald, and D. A. Antoniadis, “Implementation of Both High-Hole and Electron Mobility in Strained Si/Strained Si1-yGey on Relaxed Si1-xGex (x < y) Virtual Substrate,” IEEE Electron. Dev. Lett. 24, 460-462 (2003).
1.10 K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si n-MOSFET’s,” IEEE Trans. Electron Devices, 47, 1406 (2000).
1.11 G. Eneman, P. Verheyen, R. Rooyackers, F. Nouri, R. Schreutelkamp, V. Moroz, L. Smith, M. Jurczak, and K. D. Meyer, “Scalability of the Si1−xGex Source/Drain Technology for the 45-nm Technology Node and Beyond,” IEEE Trans. Electron Devices, 53, 1647-1656 (2006).
1.12 R. E. Belford, “Uniaxial, Tensile-Strained Si Devices,” J. Electron. Mater. 30, 807-811 (2001).
1.13 S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. E.-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon,” IEEE Trans. Electron Devices, 51, 1790-1797 (2004).
1.14 Y. C. Yeo, “Enhancing CMOS Transistor Performance Using Lattice-Mismatched Materials in Source/Drain Regions,” Semicond. Sci. Technol. 22, S177-S182 (2007).
1.15 K. J. Chui, K. W. Ang, M. F. Li, G. S. Samudra, and Y. C. Yeo, “N-MOSFET With Silicon–Carbon Source/Drain for Enhancement of Carrier Transport,” IEEE Trans. Electron Devices, 54, 249-256 (2007).
1.16 M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, and H. Iwai, “Sub-50 nm Gate Length N-MOSFETs with 10 nm Phosphorus Source and Drain Junctions,” Electron Devices Meeting, 1993. IEDM '93. Technical Digest., International, 119 (1993).
1.17 H. Iwaia , T. Ohguro, and S. I. Ohmi, “NiSi Salicide Technology for Scaled CMOS,” Microelectron. Eng. 60, 157-169 (2002).
1.18 J. A. Kittl, Q. Z. Hong, H. Yang, N. Yu, S. B. Samavedam, and M. A. Gribelyuk, “Advanced Salicides for 0.10 mm CMOS: Co Salicide Processes with Low Diode Leakage and Ti Salicide Processes with Direct Formation of Low Resistivity C54 TiSi2,” Thin Solid Films, 332, 404-411 (1998).
1.19 S. P. Murarka, “Silicide Thin Films and Their Applications in Microelectronics,” Intermetallics, 3, 173 (1995).
1.20 J. C. Barbour, A. E. M. J. Fischer, and J. F. v. d. Veen, “The Thin-Film Reaction between Ti and Thermally Grown SiO2,” J. Appl. Phys. 62, 2582 (1987).
1.21 J. A. Kittl, and Q.Z. Hong, “Self-Aligned Ti and Co Silicides for High Performance Sub-0.18 mm CMOS Technologies,” Thin Solid Films, 320, 110-121 (1998).
1.22 G. L. Miles, R. W. Mann, and J. E. Bertseh, “TiSi2 Phase Transformation Characteristics on Narrow Devices,” Thin Solid Films, 290, 469 (1996).
1.23 A. Lauwers, Q. F. Wang, B. Deweerdt, and K. Maex, “Ti/Co Bilayers in Salicide Technology Electrical Evaluation,” Appl. Surf. Sci. 91, 12 (1995).
1.24 S. Buschbaum, O. Fursenko, D. Bolze, D. Wolansky, V. Melnik, J. Nies, and W. Lerch, ” Effects of Various Co/TiN and Co/Ti Layer Stacks and the Salicide Rapid Thermal Process Conditions on Cobalt Silicide Formation,” Microelectron. Eng. 76, 311-317 (2004).
1.25 T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, and H. Iwai, “Self-Aligned Nickel-Mono-Silicide Technology for High-Speed Deep Submicrometer Logic CMOS ULSI,” IEEE Trans. Electron Devices, 42, 915-922 (1995).
1.26 D. X. Xua, S. R. Dasa, C. J. Peters, and L. E. Erickson, “Material Aspects of Nickel Silicide for ULSI Applications,” Thin Solid Films, 326, 143-150 (1998).
1.27 P. Revesz, L. R. Zheng, L. S. Hung, and J. W. Mayer, “Morphological Degradation of TiSi2 on (100) Silicon,” Appl. Phys. Lett. 48, 1591 (1986).
1.28 F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan, “Thermal Stability Study of NiSi and NiSi2 Thin Films,” Microelectron. Eng. 71, 104-111 (2004).
1.29 D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of Thermal Stability of NiSi Films on (100)Si and (111)Si by Pt Addition,” Appl. Phys. Lett. 75, 1736-1738 (1999).
1.30 C. Detavernier, and C. Lavoie, ”Influence of Pt Addition on the Texture of NiSi on Si(001),” Appl. Phys. Lett. 84, 3549-2551 (2004).
1.31 R. N. Wang, J. Y. Feng, and Y. Huang, “Mechanism about Improvement of NiSi Thermal Stability for Ni/Pt/Si(111) Bi-Layered System,” Appl. Surf. Sci. 207, 139-143 (2003).
1.32 H. Norde, J. d. Pires, F. d’Heurle, F. Pesavento, S. Petersson, and P. A. Tove, “The Schottky-Barrier Height of the Contacts between Some Rare-Earth Metals (and Silicides) and P-type Silicon,” Appl. Phys. Lett. 38, 865-866 (1981).
1.33 C. J. Choi, S. Y. Chang, S. J. Lee, Y. W. Ok, and T. Y. Seong, “Thickness Effect of a Ge Interlayer on the Formation of Nickel Silicides,” J. Electrochem. Soc. 154, H759-H763 (2007).
1.34 O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima, “Improvement in NiSi/Si Contact Properties with C-Implantation,” Microelectron. Eng. 82, 479-484 (2005).
1.35 V. Machkaoutsan, S. Mertens, M. Bauer, A. Lauwers, K. Verheyden, K. Vanormelingen, P. Verheyen, R. Loo, M. Caymax, S. Jakschik, D. Theodore, P. Absil, S. G. Thomas, and E. H. A. Granneman., “Improved Thermal Stability of Ni-Silicides on Si:C Epitaxial Layers,” Microelectron. Eng. 84, 2542-2546 (2007).
1.36 P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, A. T. S. Wee, and L. Chan, “Improved NiSi Salicide Process using Presilicide N2+ Implant for MOSFETs,” IEEE Electron. Dev. Lett, 21, 566-568 (2000).
1.37 L. E Tanner, and H. Okamoto, “The Pt-Si (Platinum-Silicon) System,” J. Phase Equil. 12, 571-574 (1991).
1.38 G. Larrieu, E. Dubois, X. Wallart, X. Baie, and J. Katcki, “Formation of Platinum-Based Silicide Contacts: Kinetics, Stoichiometry, and Current Drive Capabilities,” J. Appl. Phys. 94 7801-7810 (2003).
1.39 A. A. Neam, “Platinum Silicide Formation using Rapid Thermal Processing,” J. Appl. Phys. 64, 4161-4167 (1988).
1.40 H. Takai, P. A. Pasaras, and K. N. Tu, “Effects of Substrate Crystallinity and Dopant on the Growth Kinetics of Platinum Silicides,” J. Appl. Phys. 58, 4165-4171 (1985).
1.41 C. A. Chang, “PtSi Contact Metallurgy: Comparison of Different Annealing Sequences, Annealing Time and Ambients, and Deposition Techniques of Pt,” J. Appl. Phys. 59, 3116-3121 (1986).
1.42 F. Nava, S. Valeri, G. Majni, A. Cembali, G. Pignatel, and G. Queirolo, “The Oxygen Effect in the Growth Kinetics of Platinum Silicides,” J. Appl. Phys. 52, 6641-6646 (1981).
1.43 E. Conforto, and P. E. Schmid, “Platinum Silicide Phase Transformations Controlled by a Nanometric Interfacial Oxide Layer,” Thin Solid Films, 516, 7467-7474 (2008).
1.44 C. A. Chang, “Formation of Pt Silicides: The Effect of Oxygen,” J. Appl. Phys. 58, 1412-1414 (1985).
3.1 S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon,” IEEE Trans. Electron Devices, 51, 1790-1797 (2004).
3.2 T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffiann, K. Johnson, C. Kenyon, J. Klaus, B. Mclntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors,” IEDM Tech. Dig. 978-980 (2003).
3.3 S. H. Olsen, P. Dobrosz, R. M. B. Agaiby, Y. L. Tsang, O. Alatise, S. J. Bull, A. G. O’Neill, K. E. Moselund, A. M. Ionescu, P. Majhi, D. Buca, S. Mantl, and H. Coulson, “Nanoscale Strain Characterisation for Ultimate CMOS and Beyond,” Materials Science in Semiconductor Processing, 11, 271-278 (2008).
3.4 M. Bauer, V. Machkaoutsan, Y. Zhang, D. Weeks, J. Spear, S. G. Thomas, P. Verheyen, C. Kerner, F. Clemente, H. Bender, D. Shamiryan, R. Loo, A. Hikavyy, T. Hoffmann, P. Absil, and S. Biesemans, “SiCP Selective Epitaxial Growth in Recessed Source/Drain Regions Yielding to Drive Current Enhancement in N-Channel MOSFET,” ECS transcation, 16, 1001-1013, (2008).
3.5 K. Abe, A. Yamada, and M. Konagai, “Characterization of Epitaxial Si1-yCy Layers on Si(001) Grown by Gas-Source Molecular Beam Epitaxy,” Journal of Crystal Growth, 251, 681-684 (2003).
3.6 P. Warren, J. Mi, F. Overney, and M. Dutoit, “Thermal Stability of Si/Si1-x-yGexCy/Si Heterostructures Grown by Rapid Thermal Chemical Vapor Deposition,” Journal of Crystal Growth, 157, 414-419 (1995).
3.7 S. Zerlauth, C. Penn, H. Seyringer, J. Stangl, G. Brunthaler, G. Bauer, and F. Schäffler, “Molecular Beam Epitaxial Growth and Photoluminescence Investigation of Si1-yCy Layers,” Journal of Crystal Growth, 321, 33-40 (1998).
3.8 H. J. Osten, J. Griesche, and S. Scalese, “Substitutional Carbon Incorporation in Epitaxial Si1-yCy Alloys on Si(001) Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 74, 836-838 (1999).
3.9 M. Bauer, V. Machkaoutsan, and C. Arena, “Highly Tensile Strained Silicon–Carbon Alloys Epitaxially Grown into Recessed Source Drain Areas of NMOS Devices,” Semicind. Sci. Technol. 22, S183-S187 (2007).
3.10 G. G. Fischer, P. Zaumseil, E. Bugiel, and H. J. Osten, “Investigation of the High Temperature Behavior of Strained Si1-yCy/Si Heterostructures,” J. Appl. Phys. 77, 1934-1937 (1995).
3.11 H. J. Osten, D. Endisch, E. Dietrich, G. G. Fischer, M. Kim, D. Kruger, and P. Zaumseil, “Strain Relaxation in Tensile-Strained Si1-yCy layers on Si(001),” Semicind. Sci. Technol. 11, 1678-1687 (1996).
3.12 M. W. Dashiell, L. V. Kulik, D. Hits, J. Kolodzey, and G. Watson, “Carbon Incorporation in Si1-yCy Alloys Grown by Molecular Beam Epitaxy using A Single Silicon–Graphite Source,” Appl. Phys. Lett. 72, 833-835 (1998).
3.13 K. W. Ang, K. J. Chui, V. Bliznetsov, C. H. Tung, A. Du, N. Balasubramanian, G. Samudra, M. F. Li, and Y. C. Yeo, “Lattice Strain Analysis of Transistor Structures with Silicon–Germanium and Silicon–Carbon Source/Drain Stressors,” Appl. Phys. Lett. 86, 093102 (2005).
4.1 K. Rim, J. L. Hoyt, and L. F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET's,” IEEE Trans. Electron Devices 47, 1406-1415 (2000).
4.2 H. C. Chen, C. W. Wang, S. W. Lee, and L. J. Chen, “Pyramid-Shaped Si-Ge Superlattice Quantum Dots with Strong Photoluminescence Properties,” Adv. Mater. 18, 367-370 (2006).
4.3 X. Fan, G. Zeng, C. LaBounty, J. E. Bowers, E. Croke, C. C. Ahn, S. Huxtable, A. Majumdar, and A. Shakouri, “SiGeC/Si Superlattice Microcoolers,” Appl. Phys. Lett. 78, 1580-1582 (2001).
4.4 M. Sinha, E. F. Chor, and C. F. Tan, “Schottky Barrier Height Tuning of Silicide on Si1−xCx,” Appl. Phys. Lett. 91, 242108 (2007).
4.5 K. W. Ang, K. J. Chui, V. Bliznetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra, and Y. C. Yeo, “Enhanced Performance in 50 nm n-MOSFETs With Silicon-Carbon Source/Drain Regions”, Tech. Dig.-Int. Electron Devices Meet., 1069 (2004).
4.6 G. Larrieu, E. Dubois, X. Wallart, X. Baie, and J. Katcki, “Formation of Platinum-Based Silicide Contacts: Kinetics, Stoichiometry, and Current Drive Capabilities,” J. Appl. Phys. 94 7801-7810 (2003).
4.7 A. A. Neam, “Platinum Silicide Formation using Rapid Thermal Processing,” J. Appl. Phys. 64, 4161-4167 (1988).
4.8 H. Takai, P. A. Pasaras, and K. N. Tu, “Effects of Substrate Crystallinity and Dopant on the Growth Kinetics of Platinum Silicides,” J. Appl. Phys. 58, 4165-4171 (1985).
4.9 Y. Roichman, A. Berner, R. Brener, C. Cytermann, D. Shilo, E. Zolotoyabko, M. Eizenberg, and H. J. Osten, “Co Silicide Formation on Epitaxial Si1−yCy/Si (001) Layers,” J. Appl. Phys. 87, 3306-3312 (2000).
4.10 S. W. Lee, S. H. Huang, S. L. Cheng, P. S. Chen, and W. W. Wu, “Ni Silicide Formation on Epitaxial Si1-yCy/(001) Layers,” Thin solid films, 518, 7394-7397 (2010).
4.11 K. D. Keyser, B. D. Schutter, C. Detavernier, V. Machkaoutsan, M. Bauer, S. G. Thomas, J. J. Sweet, and C. Lavoie, “Phase Formation and Texture of Nickel Silicides on Si1-xCx Epilayers,” Microelectron. Eng. 88, 536-540 (2011).
4.12 S. W. Lee, S. S. Huang, H. C. Hsu, C. W. Nieh, W. C. Tsai, C. P. Lo, C. H. Lai, P. Y. Tsai, M. Y. Wang, C. M. Wu, and M. D. Lei, “C Redistribution during Ni Silicide Formation on Si1−yCy Epitaxial Layers,” J. Electrochem. Soc. 157, H297-H300 (2010).
4.13 V. Machkaoutsan, P. Verheyen, M. Bauer, Y. Zhang, S. Koelling, A. Franquet, K. Vanormelingen, R. Loo, C.S. Kim, A. Lauwers, N. Horiguchi, C. Kerner, T. Hoffmann, E. Granneman, W. Vandervorst, P. Absil, and S.G. Thomas, “Improved Thermal Stability of Ni-Silicides on Si:C Epitaxial Layers,” Microelectron. Eng. 84, 2542-2546 (2007).
4.14 F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan, “Thermal Stability Study of NiSi and NiSi2 Thin Films,” Microelectron. Eng. 71, 104-111 (2004).
4.15 R. T. P. Lee, L. T. Yang, T. Y. Liow, K. M. Tan, A. E. J. Lim, K. W. Ang, D. M. Y. Lai, K. M. Hoe, G. Q. Lo, G. S. Samudra, D. Z. Chi, and Y. C. Yeo, “Nickel-Silicide: Carbon Contact Technology for N-Channel MOSFETs with Silicon–Carbon Source/Drain,” IEEE Electron. Dev. Lett. 29 89-92 (2008).
6.1 A. Lauwers, A. Steegen, M. d. Potter, R. Lindsay, A. Satta, H. Bender, and K. Maex, “Materials Aspects, Electrical Performance, and Scalability of Ni Silicide towards Sub-0.13 μm Technologies,” J. Vac. Sci. Technol. B, 19, 2026-2037 (2001).
6.2 J. F. Liu, J. Y. Feng, and J. Zhu, “Comparison of the Thermal Stability of NiSi Films in Ni/Pt/(111)Si and Ni/Pt/(100)Si Systems,” J. Appl. Phys. 90, 745-749 (2001).
6.3 Z. Zhang, S. L. Zhang, B. Yang, Y. Zhu, S. M. Rossnagel, S. Gaudet, A. J. Kellock, J. Jordan-Sweet , and C. Lavoie, “Morphological Stability and Specific Resistivity of Sub-10 nm Silicide Films of Ni1−xPtx on Si Substrate,” Appl. Phys. Lett. 96, 071915 (2010).
6.4 J. B. Lee, S. Y. Jeong, B. J. Park, C. J. Choi, K. Hongd, S. J. Whang, and T. Y. Seong, “Improved Electrical and Thermal Properties of Nickel Silicides by Using a NiCo Interlayer,” Superlattices and Microstructures, 47, 259-265 (2010).
6.5 A. T. Y. Koh, R. T. P. Lee, A. E. J. Lim, D. M. Y. Lai, D. Z. Chi, K. M. Hoe, N. Balasubramanian, G. S. Samudra, and Y. C. Yeo, “Nickel-Aluminum Alloy Silicides with High Aluminum Content for Contact Resistance Reduction and Integration in n-Channel Field-Effect Transistors,” J. Electrochem. Soc. 155, H151-H155 (2008).
6.6 M. Sinha, E. F. Chor, and Y. C. Yeo, “Tuning the Schottky Barrier Height of Nickel Silicide on p-Silicon by Aluminum Segregation,” Appl. Phys. Lett., 92, 222114 (2008).
6.7 S. L. Chiu, Y. C. Chu, C. J. Tsai, and H. Y. Lee, “Effects of Ti Interlayer on Ni/Si Reaction Systems J. Electrochem. Soc. 151, G452-G455 (2004).
6.8 Y. Setiawan, P. S. Lee, C. W. Tan, and K. L. Pey, “Effect of Ti Alloying in Nickel Silicide Formation,” Thin Solid Films, 504, 153-156 (2006).
6.9 Y. Y. Zhang, S. Y. Jung, J. Oh, H. S. Shin, S. K. Oh, J. S. Wang, P. Majhi, R. Jammy, and H. D. Lee, “Influence of Incorporating Rare Earth Metals on the Schottky Barrier Height of Ni Silicide,” Jpn. J. Appl. Phys. 49, 055701 (2010).
6.10 W. Huang, Y. L. Min, G. P. Ru, Y. L. Jiang, X. P. Qu, and B. Z. Li, “Effect of Erbium Interlayer on Nickel Silicide Formation on Si (100),” Appl. Surf. Sci. 254, 2120 (2008).
6.11 D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of Thermal Stability of NiSi Films on (100)Si and (111)Si by Pt Addition,” Appl. Phys. Lett. 75, 1736-1738 (1999).
6.12 J. Y. Duboz, P. A. Badoz, F. A. d'Avitaya, and J. A. Chroboczek, “Electronic Transport Properties of Epitaxial Erbium Silicide/Silicon Heterostructures,” Appl. Phys. Lett. 55 84-86 (1989).
6.13 N. Reckinger, X. Tang, V. Bayot, D. A. Yarekha, E. Dubois, S. Godey, X. Wallart, G. Larrieu, A. Łaszcz, J. Ratajczak, P. J. Jacques, and J.-P. Raskin, ” Schottky Barrier Lowering with the Formation of Crystalline Er Silicide on n-Si upon Thermal Annealing,” Appl. Phys. Lett. 94, 191913 (2009).
6.14 W. Huang, Y. L. Min, G. P. Ru, Y. L. Jiang, X. P. Qu, and B. Z. Li, “Effect of Erbium Interlayer on Nickel Silicide Frmation on Si(100),” Appl. Surf. Sci. 254, 2120-2123 (2008).
|