博碩士論文 983208002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.133.113.216
姓名 陳宏鑫(Hung-hsin Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以PSD開發混合式追日控制與直射日照量測方法
(Development of Hybrid Sun Tracking Control and Measurement of Direct Normal Irradiation with PSD)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 不同型式光纖與集光器搭配之效率測試★ 微電滲泵之暫態熱流研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 聚光型太陽光電(concentrating photovoltaic, CPV)系統是將聚光模組搭載於追蹤器上,使其能精準的正對太陽,讓陽光聚焦於太陽電池上發電。當聚光模組的聚光率越高,對於追蹤器的追日精度要求也越高,否則會因追日偏差造成太陽光電系統的發電量劇降。通常追日偏差角要求低於0.5o。
本文將位置感應裝置PSD (position sensitive device)搭配雙軸追蹤器來開發一混合式追日控制系統,包括利用Labview撰寫PSD訊號接收程式搭配太陽位置演算法為一混合式追日控制程式。先以太陽位置演算法驅動追蹤器大略追蹤太陽位置,再將PSD量測的追日偏差角回授至混合式追日程式中進行即時精密修正,如此可將平均追日偏差角由0.52o降至0.014o。
同屬本實驗室的劉智維(2010)發展的指向誤差模型的追日技術,受限於有限的戶外測試時間,並無法完整評估此項技術。因此本文進行指向誤差模型的長時間戶外追日測試(從2010年6~12月),追日偏差大致都維持在0.1-0.2o以下。
本文將PSD量測的電壓值與直射日照量進行線性迴歸分析,發現二者有合理相關性可將電壓值轉換為直射日照量,使PSD兼具量測直射日照的功能,量測直射日照量的準確度在晴天和多雲天候的誤差分別為5.4%和8%。
摘要(英) The layout of concentrating photovoltaic (CPV) system with installing CPV module on the dual-axis sun tracker in order to allow CPV modules point precisely to sun and generate electricity by focusing sunlight onto the solar cell. Higher concentration ratio requires increasing accuracy of sun-tracking, otherwise the output power of module will drop sharply due to tracking offset. Usually, a value smaller than 0.5o offset-angle is required.
This study integrates PSD (position sensitive device) devices and dual-axis sun tracker to developing a hybrid sun-tracking control system, which consists of using Labview coding for PSD signal receiving program, integrating with the sun position algorithm to develop a hybrid sun-tracking control program, Initially the sun position algorithm (SPA) computes the sun position and drive tracker roughly tracks sun. Next the offset-angle measured by PSD is feedback to SPA for precise correction in real-time tracking. Using this method to implement hybrid sun tracking control can reduce the mean offset-angle from 0.52o to 0.014o.
Jhih-Wei Liou (2010) from our lab, he developed the pointing-error correction model for sun-tracking., Due to limited time of outdoor test, this technique did not have complete assessment. Thus, this study carry out a longer outdoor test (from June to December in 2010) for sun-tracking using pointing-error correction model, satisfactory results is obtained (the offset-angle maintained smaller than 0.1-0.2o).
This study performs linear regression analysis of measured voltage from PSD with direction normal irradiation (DNI). It is found reasonable correlation exists between these two values and allow one converts voltage value to DNI. In this way, PSD can also be used as pyrheliometer for measuring DNI. The measured mean error of DNI at sunny day and cloudy is 5.4% and 8%, respectively.
關鍵字(中) ★ 直射日照儀
★ 混合式追日控制
★ PSD感測器
★ 指向誤差修正模型
★ 聚光型太陽光電系統
關鍵字(英) ★ Hybrid sun-tracking control
★ Concentrating photovoltaic (CPV)
★ PSD sensor
★ Pyrheliometer
★ Pointing-error correction model
論文目次 中文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
符號說明 xiii
第一章 緒論 1
1.1 前言 1
1.2 聚光型太陽光電系統 2
1.2.1 系統組件 5
1.3 追日研究回顧 14
1.4 研究動機 17
1.5 論文架構 18
第二章 追日座標系與追蹤器偏差 19
2.1 座標系與追蹤偏差定義 19
2.1.1 天球座標 19
2.1.2 追蹤偏差定義 21
2.2 太陽位置演算法 22
2.3 追蹤控制方法 23
2.3.1 閉迴路追日控制 23
2.3.2 開迴路追日控制 25
2.3.3 混合式追日控制 26
2.4 追日偏差量測系統 27
第三章 實驗型CPV系統架構 29
3.1 追蹤器驅動元件 29
3.2 開迴路追蹤控制程式 30
3.3 電力調節器 32
3.4 微氣象站、日照儀、電子水平儀 33
3.5 PSD追日偏差量測系統 34
3.5.1 光電位置感測器工作原理 34
3.5.2 PSD追蹤偏差轉換 36
3.6 PSD接收程式與日照量測功能開發 37
3.6.1 PSD訊號轉換與程式開發 37
3.6.2 PSD電壓值轉換日照量之原理 41
3.7 閉迴路追蹤控制系統 42
第四章 混合式追日控制程式開發 45
4.1 混合式追控系統架構 45
4.2 混合式追控程式開發 46
第五章 系統實測結果分析與討論 51
5.1 聚光型太陽光電系統實測 51
5.1.1 開迴路追日控制實測 51
5.1.2 誤差模型修正實測 53
5.1.3 混合式追日控制實測 63
5.1.4 混合式追日控制與開迴路追日控制比較 67
5.1.5 混合式追日控制與誤差模型修正結果比較 68
5.1.6 閉迴路追日控制實測 72
5.2 PSD量測之電壓值與直射日照量量測結果比較 74
第六章 結論及建議 77
6.1 結論 77
6.2 未來改進方向 78
參考文獻 79
參考文獻 Aiuchi, K., Yoshida, K., Onozaki, M., Katayama, Y., Nakamura, M., Nakamura K. (2006) “Sensor-controlled heliostat with an equatorial mount,” Solar Energy 80: 1089–1097.
Benitez, P., Minano, J.C., Zamora, P. (2010) “High performance Fresnel-based photovoltaic concentrator,” Optics Express 18:A25-A40.
Chong, K.K., Wong, C.W. (2009) “General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector,” Solar Energy 83:298–305.
Chong, K.K., Wong, C.W., Siaw, F.L., Yew, T.K., Ng, S.S., Liang, M.S., Lim, Y.S., and. Lau, S.L. (2009) “Integration of an on-axis general sun-tracking formula in the algorithm of an open-loop sun-tracking system,” Sensors 9:7849-7865.
Cotal, H., Fetzer, C., Boisvert J., Kinsey, G., King, R., Hebert, P., Yoon, H., Karam, N. (2009) “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci., 2, 174-192.
Cucumo, M., Kaliakatsos, D., Marinelli, V. (1997) “General calculation methods for solar trajectories,” Renewable Energy 11:223-234.
Davis, M., Lawler, J., Coyle, J., Reich, A., Williams, T. (2008) “Machine vision as a method for characterizing solar tracker performance,” GreenMountain Engineering, LLC, 33rd IEEE Photovoltaic Specialists Conference.
Green, M. A., Emery, K., Hishikawa, Y., Warta, W. (2010) “Solar cell efficiency tables (version 35),” Prog. Photovolt: Res. Appl. 18:144-150.
Kurtz, S. (2009) “Opportunities and challenges for development of a mature concentrating photovoltaic power industry,” NREL/TP-520-43208.
Luque, A.L., Sala G., Luque-Heredia I. (2006) “Photovoltaic concentration at the onset of its commercial deployment,” Prog. Photovolt: Res. Appl. 14:413-428.
Luque-Heredia, I., Moreno, J.M., Magalhaes, P.H., Cervantes, R., Quemere, G., Laurent, O. (2007) “Inspira’s CPV sun tracking,” Concentrator Photovoltaics, Chapter 11, Springer-Verlag.
Mangum, J.G. (2001) “A telescope pointing algorithm for ALMA,” ALMA Memo 366.
Reda, I., Andreas, A. (2008) “Solar position algorithm for solar radiation applications,” NREL/TP-560-34302.
Rubio, F. R., Ortega, M. G., Gordillo, F., Lo’pez-Martinez, M. (2007)“Application of new control strategy for sun tracking,” Energy Conversion and Management. 48 (7):2174-2184.
Yamaguchi, M., Araki, K., Uozumi, H., Egami, T., Hiramatsu, M., Miyazaki, Y., Kemmoku, Y., Akisawa, A., Ekins-Daukes, N.J., Lee, H.S. (2005) “Development of concentrator modules with dome-shaped Fresnel lenses and triple junction concentrator cells,” Prog. Photovolt: Res. Appl. 13:513–527.
Zubi, G., Jose L., Agustin, B., Fracastoro, G.V. (2009) “High concentration photovoltaic systems applying III–V cells,” Renewable and Sustainable Energy Reviews 13:2645–265.
劉智維 (2010) 《以指向誤差修正技術應用在追日精度改進》,國立中央大學能源工程研究所碩士論文。
陳麒峯 (2010)《追日偏差量測技術開發與聚光太陽光電系統之實測》,國立中央大學能源工程研究所碩士論文。
莊榮瀚 (2008) 《太陽追蹤器之設計與測試》,國立中央大學能源工程研究所碩士論文。
張智凱 (2008) 《被動式雙軸太陽追蹤器之追控系統開發》,國立中央大學能源工程研究所碩士論文。
指導教授 吳俊諆(Jun-chi Wu) 審核日期 2011-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明