博碩士論文 983209002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.133.109.58
姓名 許執平(Chih-Ping Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
(Supercritical Fluid Synthesized metal/carbon nanotube Composites for Improving Dehydrogenation Performance of LiAlH4)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ LaNi5對Mg2Ni合金電極性質之影響
★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討
★ 鈧對Al-7Si-0.6Mg合金機械性質影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 高壓氫壓縮機用之儲氫合金開發★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響
★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響★ 離子液體電解質應用於石墨烯超級電容之特性分析
★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極
★ 電解質添加劑對鋅二次電池陽極電化學性質的影響★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究首先分別以球磨法於氫化鋁鋰(LiAlH4)添加各種金屬、金屬氧化物與碳材並研究催化效果,找出適合的催化劑與載體,研究其添加量對催化效果之影響;再利用超臨界流體(Supercritical fluids)製備金屬觸媒/奈米碳管複合材料,以球磨法與LiAlH4均勻混合,先研究超臨界流體之製程參數對其放氫特性的影響,而後研究複合材料添加量與催化效果之關係,最後則是恆溫放氫動力學的研究,並與文獻添加中奈米Ni文獻之放氫動力學曲線做比較。
分析儀器則使用X光繞射儀(X-Ray Diffractometer, XRD)與臨場X光繞射(In-situ XRD)進行晶體結構與相變化鑑定、掃描式電子顯微鏡(Scanning Electron Microscope, SEM)進行催化劑與LiAlH4球磨前後之微觀結構分析、高解析掃描穿透式電子顯微鏡(High-Resolution Scanning Transmission Electron Microscopy, HR-STEM)進行金屬顆粒於碳材上之大小及分佈分析、熱程控脫附儀(Temperature-programmed Desorption, TPD)與線上氣體量測即時分析儀(Real time gas Analyzer, RTGA)進行放氫特性研究。
研究結果顯示所添加微米級之金屬如Ni、Pd、Cu、Fe等催化效果皆不顯著,然而文獻中雖然學者添加奈米Ni具有催化效果,推測是由於顆粒大小造成與文獻催化效果上的差異;金屬氧化物部分Y2O3具有些微催化效果,Nb2O5則為具有稍佳的效果,而在碳材的催化效果中以多壁奈米碳管(MWCNTs)的效果最好,添加量達50 wt%時在室溫下即可放出氫氣,石墨烯(Graphene)則次之。利用超臨界流體披覆奈米Ni於MWCNTs上形成Ni/CNT之催化效果則相當顯著,與金屬Ni之效果差異極大,10 wt% Ni/CNT催化效果更優於50 wt% MWCNTs,足以說明催化劑之尺寸效應相當大,且Ni/CNT於相同添加量下之放氫溫度低於文獻中提及效果最佳之VCl3,放氫動力學則優於文獻中之奈米Ni,證實超臨界流體法為一有效改善氫化鋁鋰放氫特性與節省催化劑使用量之製程。
摘要(英) In this study, we tried to improve the hydrogen storage properties of lithium aluminum hydride (LiAlH4) by ball milling process. Additives were metal, metal oxide and carbon materials. To further improved the catalytic effect of additives, we used supercritical fluids assisted process to decorate metal particles on carbon nanomaterials, ball milled with LiAlH4 and investigated the influence of supercritical fluid parameters and metal loading on the dehydrogenation properties of LiAlH4.
Analytical Instruments were X-Ray Diffractometer (XRD), In-situ XRD, Scanning Electron Microscope(SEM), High-Resolution Scanning Transmission Electron Microscopy (HR-STEM), Real time gas Analyzer (RTGA), and Temperature-programmed Desorption (TPD).
The results of this study showed carbon materials had the best catalytic effect for LiAlH4 among metal, metal oxide and carbon materials, especially multi-walled carbon nanotube (with catalyst) and graphene. Moreover, compared to 50 wt% MWCNTs (with catalyst) modified LiAlH4, the dehydrogenation properties of 10 wt% Ni/CNT composites modified LiAlH4 were better.
關鍵字(中) ★ 超臨界流體
★ 氫化鋁鋰
★ 臨場X光繞射
★ 熱程控脫附儀
★ 奈米碳管
★ 石墨烯
關鍵字(英) ★ temperature-programmed desorption (TPD)
★ multi-walled carbon nanotube (MWCNTs)
★ graphene
★ In-situ XRD
★ supercritical fluid
★ lithium aluminum hydride (LiAlH4)
論文目次 摘要 I
Abstract III
致謝 IV
總目錄 V
表目錄 VIII
圖目錄 X
一、研究背景與文獻回顧 1
1.1儲氫材料的使用 1
1.2儲氫材料的分類 2
1.3 MAlH4(M = Li, Na)複合型氫化物 3
1.3.1氫化鋁鋰(LiAlH4)之基本性質 4
1.3.2氫化鋁鋰(LiAlH4)之球磨研究 5
1.3.3氫化鋁鋰(LiAlH4)之催化劑添加研究 6
1.3.4 MAlH4(M = Li, Na)之碳材添加研究 8
1.4超臨界流體法 9
1.4.1超臨界流體簡介 9
1.4.2超臨界流體之性質 10
1.4.3超臨界二氧化碳 11
1.4.4超臨界流體於碳材上製備奈米修飾顆粒 12
1.5實驗目的 14
二、實驗方法與步驟 29
2.1實驗方法與流程 29
2.2複合材料製作與催化劑之添加 31
2.2.1機械球磨法 31
2.2.2超臨界流體法 31
2.3相變化分析 32
2.3.1 X光繞射儀(X-Ray Diffractometer, XRD) 32
2.3.2臨場X光繞射(In-situ XRD) 32
2.4微觀結構分析 33
2.4.1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 33
2.4.2高解析掃描穿透式電子顯微鏡(High-Resolution Scanning Transmission Electron Microscopy, HR-STEM, JEM2100) 33
2.5放氫特性分析 34
2.5.1熱程控脫附儀(Temperature-programmed Desorption, TPD) 34
2.5.2線上氣體量測即時分析儀(Real time gas Analyzer, RTGA) 34
三、實驗結果與討論 38
3.1 LiAlH4原材料分析 38
3.2球磨參數的選擇 39
3.3不同添加物之催化效果分析 40
3.3.1各式金屬之催化效果分析 40
3.3.2各式氧化物之催化效果分析 41
3.3.3各式碳材之催化效果分析 41
3.4超臨界流體製程影響之分析 44
3.4.1超臨界二氧化碳、空氣之披覆輔助效果 44
3.4.2於MWCNTs上之Ni其粒徑大小與分佈分析 45
3.5超臨界流體製備之複合材料催化效果分析 46
3.5.1 Pd/CNT之催化效果分析 46
3.5.2 Ni/CNT、Ni/Graphene之催化效果分析 46
四、結論 74
五、未來研究方向 76
六、參考文獻 77
參考文獻 [1] International Energy Agency, Key World Energy Statistics, 2009.
[2] A. Züttel, “Materials for hydrogen storage ”, Mater. Today, 6 (2003) 24-33.
[3] L. Schlapbach, A. Züttel, “Hydrogen-storage materials for mobile applications”, Nature, 414 (2001) 353-358.
[4] B. Sakintunaa, F. Lamari-Darkrimb, M. Hirscherc, “Metal hydride materials for solid hydrogen storage:Areview”, Int. J. Hydrogen Energy, 32 (2007) 1121-1140.
[5] I. P. Jain, C. Lal, A. Jain, “Hydrogen storage in Mg: A most promising material”, Int. J. Hydrogen Energy, 35 (2010) 5133-5144.
[6] E. Akiba, “Hydrogen-absorbing alloys”, Curr. Opin. Solid State Mater. Sci., 4 (1999) 267-272.
[7] H. Pan, R. Li, M. Gao, Y. Liu, Q. Wang, “Effects of Cr on the structural and electrochemical properties of TiV-based two-phase hydrogen storage alloys”, J. Alloys Compd., 404-406 (2005) 669-674.
[8] I.P. Jain, P. Jain, A. Jain, “Novel Hydrogen Storage Materials: A review of lightweight complex hydrides”, J. Alloys Compd., 503 (2010) 303-339.
[9] B. Bogdanovic, M. Schwickardi, “Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials”, J. Alloys Compd., 253-254 (1997) 1-9.
[10] A. Andreasena,T. Veggea, A.S. Pedersen, “Dehydrogenation kinetics of as-received and ball-milled LiAlH4”, J. Solid State Chem., 178 (2005) 3672-3678.
[11] A. E. Finholat., A. C. Bond, JR., H. I. Schlesinger, “Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry”, J. Am. Chem. Soc., 69 (1947) 1199-1203.
[12] E. C. Ashby, G. J. Brendel, H. E. Redman, “Direct synthesis of complex metal hydrides”, Inorg. Chem., 2 (1963) 499-504.
[13] H. Clasen, “Alanate synthesis from the elements and its significance”, Angew. Chem. Int. Ed., 73 (1961) 322-331.
[14] J. Wang, A. D. Ebner, J. A. Ritter, “Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4”, J. Am. Chem. Soc., 128 (2006) 5949.
[15] Y. Kojima, Y. Kawai, T. Haga, M. Matsumoto, A. Koiwai, “Direct formation of LiAlH4 by a mechanochemical reaction”, J. Alloys Compd., 441 (2007) 189-191.
[16] N. SKLAR, B. POST, “Crystal structure of lithium aluminum hydride”, Inorg. Chem., 6 (1967) 669-671.
[17] B. C. Hauback, H. W. Brinks, H. Fjellvag, “Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction”, J. Alloys Compd., 346 (2002) 184-189.
[18] M. Hirscher, J. Mossinger, H. Kronmuller, “Diffusion of hydrogen in nanocrystalline transition-metal alloys”, Nanostruct. Mater., 6 (1995) 635-638.
[19] R. L. Coble, “A model for boundary diffusion controlled creep in polycrystalline materials”, J. Appl. Phys., 34 (1963) 1679-1682.
[20] S. Liu, L. Sun, Y. Zhang, F. Xu, J. Zhang, H. Chu, M. Fan, T. Zhang, X. Song, J. P. Grolier, “Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4”, Int. J. Hydrogen Energy, 34 (2009) 8079-8085.
[21] X. Zheng, S. Liu, “Effect of LaCl3 and Ti on hydrogen storage properties of NaAlH4 and LiAlH4”, Rare Met. Mater. Eng., 38 (2009) 1328-1332.
[22] M. Resan, M. D. Hampton, J. K. Lomness, D. K. Slattery, “Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4”, Int. J. Hydrogen Energy, 30 (2005) 1417-1421.
[23] D. S. Easton, J. H. Schneibel, S. A. Speakman, “Factors affecting hydrogen release from lithium alanate (LiAlH4)”, J. Alloys Compd., 398 (2005) 245-248.
[24] M. Ismail, Y. Zhao, X.B. Yu, S.X. Dou, “Effects of NbF5 addition on the hydrogen storage properties of LiAlH4”, Int. J. Hydrogen Energy, 35 (2010) 2361-2367.
[25] M. Naika, S. Rathera, C. S. Sob, S. W. Hwanga, A. R. Kimb, K. S. Nahma, “Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides”, Int. J. Hydrogen Energy, 34 (2009) 8937-8943.
[26] Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, N. Muangsin, S. Kulprathipanja, “Catalytic effect of Zr and Hf on hydrogen desorption absorption of NaAlH4 and LiAlH4”, Int. J. Hydrogen Energy, 32 (2007) 1277-1285.
[27] T. Sun, C. K. Huang, H. Wang, L. X. Sun, M. Zhu, “The effect of doping NiCl2 on the dehydrogenation properties of LiAlH4”, Int. J. Hydrogen Energy, 33 (2008) 6216-6221.
[28] A. Andreasen, “Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride”, J. Alloys Compd., 419 (2006) 40-44.
[29] J. R. A. Fernandez, F. Aguey-Zinsou, M. Elsaesser, X. Z. Ma, M. Dornheim, T. Klassen, R. Bormann, “Mechanical and thermal decomposition of LiAlH4 with metal halides”, Int. J. Hydrogen Energy, 32 (2007) 1033-1040.
[30] D. Blanchard, H.W. Brinks, B.C. Hauback, P. Norby, “Desorption of LiAlH4 with Ti- and V-based additives”, Mater. Sci. Eng., B, 108 (2004) 54-59.
[31] M. Resan, M. D. Hampton, J. K. Lomness, D. K. Slattery, “Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH4”, Int. J. Hydrogen Energy, 30 (2005) 1413-1416.
[32] X. Zheng, P. Li, X. Qu, “Effect of additives on the reversibility of lithium alanate (LiAlH4)”, Rare Met. Mater. Eng., 38 (2009) 766-769.
[33] X. Zheng, S. Liu, “Study on hydrogen storage properties of LiAlH4”,
J. Alloys Compd., 481 (2009) 761-763.
[34] X. Zheng, X. Qua, I. S. Humaila, P. Li, G. Wang, “Effects of various catalysts and heating rates on hydrogen release from lithium alanate”, Int. J. Hydrogen Energy, 32 (2007) 1141-1144.
[35] R. A. Varin, L. Zbroniec, “The effects of nanometric nickel (n-Ni) catalyst on the dehydrogenation and rehydrogenation behavior of ball milled lithium alanate (LiAlH4)”, J. Alloys Compd., 506 (2010) 928-939.
[36] R. A. Varin, L. Zbroniec, T. Czujko, Z. S. Wronski, “The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium alanate)”, Int. J. Hydrogen Energy, 36 (2011) 1167-1176.
[37] M. Ismail, Y. Zhao, X.B. Yu, I.P. Nevirkovets, S.X. Dou, “Significantly improved dehydrogenation of LiAlH4 catalysed with TiO2 nanopowder”, Int. J. Hydrogen Energy, 36 (2011) 8327-8334.
[38] D. Pukazhselvan, M. S. L. Hudson, A.S.K. Sinha, O.N. Srivastava, “Studies on metal oxide nanoparticles catalyzed sodium aluminum hydride”, Energy, 35 (2010) 5037-5042.
[39] M. S. L. Hudson, H. Raghubanshi, D. Pukazhselvan, O. N. Srivastava, “Effects of helical GNF on improving the dehydrogenation behavior of LiMg(AlH4)3 and LiAlH4”, Int. J. Hydrogen Energy, 35 (2010) 2083-2090.
[40] L. H. Kumar, B. Viswanathan, S. Srinivasa Murthy, “Dehydriding behaviour of LiAlH4—the catalytic role of carbon nanofibres”, Int. J. Hydrogen Energy, 33 (2008) 366-373.
[41] Z. Dehouche1, L. Lafi, N. Grimard, J. Goyette, R. Chahine, “The catalytic effect of single-wall carbon nanotubes on the hydrogen sorption properties of sodium alanates”, Int. J. Nanotechnol., 16 (2005) 402-409.
[42] D. Pukazhselvan, B. K. Gupta, A. Srivastava, O. N. Srivastava, “Investigations on hydrogen storage behavior of CNT doped NaAlH4”, J. Alloys Compd., 403 (2005) 312-317.
[43] P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araujo, R. H. Scheicher, R. Ahuja, P. Jena, “Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4”, Nano Lett., 9(4) (2011) 1501-1505.
[44] C. Cagniard de la Tour, Ann. Chim. Phys., 21 (1822) 127, 178.
[45] M. V. Palmer, S. S. T. Ting, “Applications for supercritical fluid technology in food processing”, Food Chemistry, 52 (1995) 345-352.
[46] J. B. Rubin, L. B. Davenhall, C. M. V. Taylor, L. D. Sivils, T. Pierce, CO2-based supercritical fluids as replacements for photoresist-stripping solvents.
[47] J. B. Hannay, Hogarth, “On the solubility of solids in gases”, Nature, 21 (27 November 1879) 82-83.
[48] R. Edward, Q. Sun, Z. Zhang, C. Zhang, W. Gou, “Mini-review green sustainable processes using supercritical fluid carbon dioxide”, J. Environ. Sci., 21 (2009) 720-726.
[49] F. Cansell, C. Aymonier, A. Loppinet-Serani, “Review on materials science and supercritical fluids”, Curr. Opin. Solid State Mater. Sci., 7 (2003) 331-340.
[50] S. S. H. Rizvi, A. Benado, J. A. Zollweg and J. A. Daniels, “Supercritical fluid extration operating principles and food applications”, J. Food Technol., 6 (1986) 61-65.
[51] M. A. McHugh, V. J. Krukonis, Supercritical fluid Extraction principles and Practice, Butterworth-Heinemann, (1994).
[52] A. Marsal, P.J. Celma, J. Cot, M. Cequier, “Supercritical CO2 extraction as a clean degreasing process in the leather industry”, J. Supercrit. Fluids, 16 (2000) 217-223.
[53] E. J. Beckman, “Supercritical and near-critical CO2 in green chemical synthesis and processing”, J. Supercrit. Fluids, 28 (2004) 121-191.
[54] W. Leitner, “Green chemistry: Designed to dissolve”, Nature, 405 (2000) 129-130.
[55] Q. Li, Z. Zhang, C. Zhong, Y. Liu, Q. Zhou, “Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents”, Fluid Phase Equilib., 207 (2003) 183-192.
[56] J. M. DeSimone, “Practical Approaches to Green Solvents”, Science, 297 (2002) 799-803.
[57] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldie, M. Prato, “Decorating carbon nanotubes with metal or semiconductor nanoparticles”, J. Mater. Chem., 17 (2007) 2679-2694.
[58] Z. Liu, X. Y. Ling, X. Su, J. Y. Lee, “Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell”, J. Phys. Chem. B, 108 (2004) 8234-8240
[59] W. Yuan, G. Jiang, J. Che, X. Qi, R. Xu, M. W. Chang, Y. Chen, S. Y. Lim, J. Dai, M. B. Chan-Park, “Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects”, J. Phys. Chem. C, 112 (2008) 18754-18759.
[60] C. T. Hsieh, J. Y. Lin, J. L. Wei, “Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes”, Int. J. Hydrogen Energy, 34 (2009) 685-693.
[61] V. Bambagionia, C. Bianchinia, A. Marchionnia, J. Filippi, F. Vizzaa, J. Teddyb, P. Serpb, M. Zhiani, “Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane”, J. Power Sources, 190 (2009) 241-251.
[62] Y. Zhao, X. Yang, J. Tian, F. Wang, L. Zhan, “Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media”, Int. J. Hydrogen Energy, 35 (2010) 3249-3257.
[63] W. Li, H. Jung, N. D. Hoa1, D. Kim, S. K. Hong, H. Kim, “Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for agassensorapplication”, Sens. Actuators, B, 150 (2010) 160-166.
[64] X. R. Ye, Y. Lin, C. M. Wai, “Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide”, Chem. Commun., (2003) 642-643.
[65] X. R. Ye, Y. Lin, C.Wang, C. M. Wai, “Supercritical fluid fabrication of metal nanowires and nanorods templated by multi-walled carbon nanotubes”, Adv. Mater., 15 (2003) 316-319.
[66] X. R. Ye, Y. Lin, C. Wang, M. H. Engelhard, Y. Wanga, C. M. Wai, “Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes”, J. Mater. Chem., 14 (2004) 908-913.
[67] B. Yoon, C. M. Wai, “Microemulsion-templated synthesis of carbon nanotube-supported pd and rh nanoparticles for catalytic applications”, J. Am. Chem. Soc., 127 (2005) 17174-17175
[68] X. R. Ye, Y. Lin, C. M. Wai, J. B. Talbot, S. Jin, “Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes”, J. Nanosci. Nanotechnol., 6 (2005) 964-969.
[69] Z. Y. Sun, Z. M. Liu, B. X. Han, S. D. Miao, Z. J. Miao, G. M. An, “Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution”, J. Colloid Interface Sci., 304 (2006) 323-328.
[70] B. Cangül, L.C. Zhang, M. Aindow, C. Erkey, “Preparation of carbon black supported Pd, Pt and Pd-Pt nanoparticles using supercritical CO2 deposition”, J. Supercrit. Fluids, 50 (2009) 82-90.
[71] Q. Peng, J. C. Spagnola, G. N. Parsons, “Self-catalyzed hydrogenolysis of nickelocenefunctional metal coating of three-dimensional nanosystems at low temperature”, J. Electrochem. Soc., 155 (2008) D580.
Hydrogen Energy, 35 (2010) 5490-5497.
[72] C. Y. Chen, K. Y. Lin, W. T. Tsai, J. K. Chang, C. M. Tsen, “Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite”, Int. J. Hydrogen Energy, 35 (2010) 5490-5497.
[73] Z. Sun, Z. Liu, B. Han, Y. Wang, J. Du, Z. Xie, G. Han, “Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water”, Adv. Mater., 17 (2005) 928-932.
[74] C. H. Yen, X. Cui, H. B. Pan, S. Wang, Y. Lin, C. M. Wai, “Deposition of platinum nanoparticles on carbon nanotubes by supercritical fluid method”, J. Nanosci. Nanotechnol., 11 (2005) 1852-1857.
[75] Y. Lin, X. Cui, C. Yen, C. M. Wai, “Platinum carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells”, J. Phys. Chem. B, 109 (2005) 14410-14415.
[76] A. Bayrakceken, U. Kitkamthorn, M. Aindowb, C. Erkey, “Decoration of multi-wall carbon nanotubes with platinum nanoparticles using supercritical deposition with thermodynamic control of metal loading”, Scr. Mater., 56 (2007) 101-103.
[77] A. Bayrakceken, A. Smirnova, U. Kitkamthorn, M. Aindowb, L. Turker, I. Eroglu, C. Erkey, “Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique”, J. Power Sources, 179 (2008) 532-540.
[78] T. Machino, W. Takeuchi, H. Kano1, M. Hiramatsu, M. Hori, “Synthesis of Platinum Nanoparticles on Two-Dimensional Carbon Nanostructures”, Appl. Phys. Express, 2 (2009) 025001.
[79] Y. Lin, X. Cui , C. H. Yen, C. M. Wai, “PtRu carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells”, Langmuir, 21 (2005) 11474-11479.
[80] G. An, P. Yu, L. Mao, Z. Sun, Z. Liu, S. Miao, Z. Miao, K. Ding, “Synthesis of PtRu carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells”, Carbon, 45 (2007) 536-542.
[81] A. Niu, Y. Han, J. Wu, N. Yu, Q. Xu, “Synthesis of one-dimensional carbon nanomaterials wrapped by silver nanoparticles and their antibacterial behavior”, J. Phys. Chem. C, 114 (2010) 12728-12735.
[82] K. Miwa, N. Ohba, S. Towata, Y. Nakamori, S. Orimo, “First-principles study on copper-substituted lithium borohydride, (Li1−xCux)BH4”, J. Alloys Compd., 404-406 (2005) 140-143.
指導教授 李勝隆、洪健龍、張仍奎
(Sheng-Long Lee、Jain-Long Horng、Jeng-Kuei Chang)
審核日期 2011-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明