參考文獻 |
[1] International Energy Agency, Key World Energy Statistics, 2009.
[2] A. Züttel, “Materials for hydrogen storage ”, Mater. Today, 6 (2003) 24-33.
[3] L. Schlapbach, A. Züttel, “Hydrogen-storage materials for mobile applications”, Nature, 414 (2001) 353-358.
[4] B. Sakintunaa, F. Lamari-Darkrimb, M. Hirscherc, “Metal hydride materials for solid hydrogen storage:Areview”, Int. J. Hydrogen Energy, 32 (2007) 1121-1140.
[5] I. P. Jain, C. Lal, A. Jain, “Hydrogen storage in Mg: A most promising material”, Int. J. Hydrogen Energy, 35 (2010) 5133-5144.
[6] E. Akiba, “Hydrogen-absorbing alloys”, Curr. Opin. Solid State Mater. Sci., 4 (1999) 267-272.
[7] H. Pan, R. Li, M. Gao, Y. Liu, Q. Wang, “Effects of Cr on the structural and electrochemical properties of TiV-based two-phase hydrogen storage alloys”, J. Alloys Compd., 404-406 (2005) 669-674.
[8] I.P. Jain, P. Jain, A. Jain, “Novel Hydrogen Storage Materials: A review of lightweight complex hydrides”, J. Alloys Compd., 503 (2010) 303-339.
[9] B. Bogdanovic, M. Schwickardi, “Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials”, J. Alloys Compd., 253-254 (1997) 1-9.
[10] A. Andreasena,T. Veggea, A.S. Pedersen, “Dehydrogenation kinetics of as-received and ball-milled LiAlH4”, J. Solid State Chem., 178 (2005) 3672-3678.
[11] A. E. Finholat., A. C. Bond, JR., H. I. Schlesinger, “Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry”, J. Am. Chem. Soc., 69 (1947) 1199-1203.
[12] E. C. Ashby, G. J. Brendel, H. E. Redman, “Direct synthesis of complex metal hydrides”, Inorg. Chem., 2 (1963) 499-504.
[13] H. Clasen, “Alanate synthesis from the elements and its significance”, Angew. Chem. Int. Ed., 73 (1961) 322-331.
[14] J. Wang, A. D. Ebner, J. A. Ritter, “Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4”, J. Am. Chem. Soc., 128 (2006) 5949.
[15] Y. Kojima, Y. Kawai, T. Haga, M. Matsumoto, A. Koiwai, “Direct formation of LiAlH4 by a mechanochemical reaction”, J. Alloys Compd., 441 (2007) 189-191.
[16] N. SKLAR, B. POST, “Crystal structure of lithium aluminum hydride”, Inorg. Chem., 6 (1967) 669-671.
[17] B. C. Hauback, H. W. Brinks, H. Fjellvag, “Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction”, J. Alloys Compd., 346 (2002) 184-189.
[18] M. Hirscher, J. Mossinger, H. Kronmuller, “Diffusion of hydrogen in nanocrystalline transition-metal alloys”, Nanostruct. Mater., 6 (1995) 635-638.
[19] R. L. Coble, “A model for boundary diffusion controlled creep in polycrystalline materials”, J. Appl. Phys., 34 (1963) 1679-1682.
[20] S. Liu, L. Sun, Y. Zhang, F. Xu, J. Zhang, H. Chu, M. Fan, T. Zhang, X. Song, J. P. Grolier, “Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4”, Int. J. Hydrogen Energy, 34 (2009) 8079-8085.
[21] X. Zheng, S. Liu, “Effect of LaCl3 and Ti on hydrogen storage properties of NaAlH4 and LiAlH4”, Rare Met. Mater. Eng., 38 (2009) 1328-1332.
[22] M. Resan, M. D. Hampton, J. K. Lomness, D. K. Slattery, “Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4”, Int. J. Hydrogen Energy, 30 (2005) 1417-1421.
[23] D. S. Easton, J. H. Schneibel, S. A. Speakman, “Factors affecting hydrogen release from lithium alanate (LiAlH4)”, J. Alloys Compd., 398 (2005) 245-248.
[24] M. Ismail, Y. Zhao, X.B. Yu, S.X. Dou, “Effects of NbF5 addition on the hydrogen storage properties of LiAlH4”, Int. J. Hydrogen Energy, 35 (2010) 2361-2367.
[25] M. Naika, S. Rathera, C. S. Sob, S. W. Hwanga, A. R. Kimb, K. S. Nahma, “Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides”, Int. J. Hydrogen Energy, 34 (2009) 8937-8943.
[26] Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, N. Muangsin, S. Kulprathipanja, “Catalytic effect of Zr and Hf on hydrogen desorption absorption of NaAlH4 and LiAlH4”, Int. J. Hydrogen Energy, 32 (2007) 1277-1285.
[27] T. Sun, C. K. Huang, H. Wang, L. X. Sun, M. Zhu, “The effect of doping NiCl2 on the dehydrogenation properties of LiAlH4”, Int. J. Hydrogen Energy, 33 (2008) 6216-6221.
[28] A. Andreasen, “Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride”, J. Alloys Compd., 419 (2006) 40-44.
[29] J. R. A. Fernandez, F. Aguey-Zinsou, M. Elsaesser, X. Z. Ma, M. Dornheim, T. Klassen, R. Bormann, “Mechanical and thermal decomposition of LiAlH4 with metal halides”, Int. J. Hydrogen Energy, 32 (2007) 1033-1040.
[30] D. Blanchard, H.W. Brinks, B.C. Hauback, P. Norby, “Desorption of LiAlH4 with Ti- and V-based additives”, Mater. Sci. Eng., B, 108 (2004) 54-59.
[31] M. Resan, M. D. Hampton, J. K. Lomness, D. K. Slattery, “Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH4”, Int. J. Hydrogen Energy, 30 (2005) 1413-1416.
[32] X. Zheng, P. Li, X. Qu, “Effect of additives on the reversibility of lithium alanate (LiAlH4)”, Rare Met. Mater. Eng., 38 (2009) 766-769.
[33] X. Zheng, S. Liu, “Study on hydrogen storage properties of LiAlH4”,
J. Alloys Compd., 481 (2009) 761-763.
[34] X. Zheng, X. Qua, I. S. Humaila, P. Li, G. Wang, “Effects of various catalysts and heating rates on hydrogen release from lithium alanate”, Int. J. Hydrogen Energy, 32 (2007) 1141-1144.
[35] R. A. Varin, L. Zbroniec, “The effects of nanometric nickel (n-Ni) catalyst on the dehydrogenation and rehydrogenation behavior of ball milled lithium alanate (LiAlH4)”, J. Alloys Compd., 506 (2010) 928-939.
[36] R. A. Varin, L. Zbroniec, T. Czujko, Z. S. Wronski, “The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium alanate)”, Int. J. Hydrogen Energy, 36 (2011) 1167-1176.
[37] M. Ismail, Y. Zhao, X.B. Yu, I.P. Nevirkovets, S.X. Dou, “Significantly improved dehydrogenation of LiAlH4 catalysed with TiO2 nanopowder”, Int. J. Hydrogen Energy, 36 (2011) 8327-8334.
[38] D. Pukazhselvan, M. S. L. Hudson, A.S.K. Sinha, O.N. Srivastava, “Studies on metal oxide nanoparticles catalyzed sodium aluminum hydride”, Energy, 35 (2010) 5037-5042.
[39] M. S. L. Hudson, H. Raghubanshi, D. Pukazhselvan, O. N. Srivastava, “Effects of helical GNF on improving the dehydrogenation behavior of LiMg(AlH4)3 and LiAlH4”, Int. J. Hydrogen Energy, 35 (2010) 2083-2090.
[40] L. H. Kumar, B. Viswanathan, S. Srinivasa Murthy, “Dehydriding behaviour of LiAlH4—the catalytic role of carbon nanofibres”, Int. J. Hydrogen Energy, 33 (2008) 366-373.
[41] Z. Dehouche1, L. Lafi, N. Grimard, J. Goyette, R. Chahine, “The catalytic effect of single-wall carbon nanotubes on the hydrogen sorption properties of sodium alanates”, Int. J. Nanotechnol., 16 (2005) 402-409.
[42] D. Pukazhselvan, B. K. Gupta, A. Srivastava, O. N. Srivastava, “Investigations on hydrogen storage behavior of CNT doped NaAlH4”, J. Alloys Compd., 403 (2005) 312-317.
[43] P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araujo, R. H. Scheicher, R. Ahuja, P. Jena, “Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4”, Nano Lett., 9(4) (2011) 1501-1505.
[44] C. Cagniard de la Tour, Ann. Chim. Phys., 21 (1822) 127, 178.
[45] M. V. Palmer, S. S. T. Ting, “Applications for supercritical fluid technology in food processing”, Food Chemistry, 52 (1995) 345-352.
[46] J. B. Rubin, L. B. Davenhall, C. M. V. Taylor, L. D. Sivils, T. Pierce, CO2-based supercritical fluids as replacements for photoresist-stripping solvents.
[47] J. B. Hannay, Hogarth, “On the solubility of solids in gases”, Nature, 21 (27 November 1879) 82-83.
[48] R. Edward, Q. Sun, Z. Zhang, C. Zhang, W. Gou, “Mini-review green sustainable processes using supercritical fluid carbon dioxide”, J. Environ. Sci., 21 (2009) 720-726.
[49] F. Cansell, C. Aymonier, A. Loppinet-Serani, “Review on materials science and supercritical fluids”, Curr. Opin. Solid State Mater. Sci., 7 (2003) 331-340.
[50] S. S. H. Rizvi, A. Benado, J. A. Zollweg and J. A. Daniels, “Supercritical fluid extration operating principles and food applications”, J. Food Technol., 6 (1986) 61-65.
[51] M. A. McHugh, V. J. Krukonis, Supercritical fluid Extraction principles and Practice, Butterworth-Heinemann, (1994).
[52] A. Marsal, P.J. Celma, J. Cot, M. Cequier, “Supercritical CO2 extraction as a clean degreasing process in the leather industry”, J. Supercrit. Fluids, 16 (2000) 217-223.
[53] E. J. Beckman, “Supercritical and near-critical CO2 in green chemical synthesis and processing”, J. Supercrit. Fluids, 28 (2004) 121-191.
[54] W. Leitner, “Green chemistry: Designed to dissolve”, Nature, 405 (2000) 129-130.
[55] Q. Li, Z. Zhang, C. Zhong, Y. Liu, Q. Zhou, “Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents”, Fluid Phase Equilib., 207 (2003) 183-192.
[56] J. M. DeSimone, “Practical Approaches to Green Solvents”, Science, 297 (2002) 799-803.
[57] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldie, M. Prato, “Decorating carbon nanotubes with metal or semiconductor nanoparticles”, J. Mater. Chem., 17 (2007) 2679-2694.
[58] Z. Liu, X. Y. Ling, X. Su, J. Y. Lee, “Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell”, J. Phys. Chem. B, 108 (2004) 8234-8240
[59] W. Yuan, G. Jiang, J. Che, X. Qi, R. Xu, M. W. Chang, Y. Chen, S. Y. Lim, J. Dai, M. B. Chan-Park, “Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects”, J. Phys. Chem. C, 112 (2008) 18754-18759.
[60] C. T. Hsieh, J. Y. Lin, J. L. Wei, “Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes”, Int. J. Hydrogen Energy, 34 (2009) 685-693.
[61] V. Bambagionia, C. Bianchinia, A. Marchionnia, J. Filippi, F. Vizzaa, J. Teddyb, P. Serpb, M. Zhiani, “Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane”, J. Power Sources, 190 (2009) 241-251.
[62] Y. Zhao, X. Yang, J. Tian, F. Wang, L. Zhan, “Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media”, Int. J. Hydrogen Energy, 35 (2010) 3249-3257.
[63] W. Li, H. Jung, N. D. Hoa1, D. Kim, S. K. Hong, H. Kim, “Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for agassensorapplication”, Sens. Actuators, B, 150 (2010) 160-166.
[64] X. R. Ye, Y. Lin, C. M. Wai, “Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide”, Chem. Commun., (2003) 642-643.
[65] X. R. Ye, Y. Lin, C.Wang, C. M. Wai, “Supercritical fluid fabrication of metal nanowires and nanorods templated by multi-walled carbon nanotubes”, Adv. Mater., 15 (2003) 316-319.
[66] X. R. Ye, Y. Lin, C. Wang, M. H. Engelhard, Y. Wanga, C. M. Wai, “Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes”, J. Mater. Chem., 14 (2004) 908-913.
[67] B. Yoon, C. M. Wai, “Microemulsion-templated synthesis of carbon nanotube-supported pd and rh nanoparticles for catalytic applications”, J. Am. Chem. Soc., 127 (2005) 17174-17175
[68] X. R. Ye, Y. Lin, C. M. Wai, J. B. Talbot, S. Jin, “Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes”, J. Nanosci. Nanotechnol., 6 (2005) 964-969.
[69] Z. Y. Sun, Z. M. Liu, B. X. Han, S. D. Miao, Z. J. Miao, G. M. An, “Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution”, J. Colloid Interface Sci., 304 (2006) 323-328.
[70] B. Cangül, L.C. Zhang, M. Aindow, C. Erkey, “Preparation of carbon black supported Pd, Pt and Pd-Pt nanoparticles using supercritical CO2 deposition”, J. Supercrit. Fluids, 50 (2009) 82-90.
[71] Q. Peng, J. C. Spagnola, G. N. Parsons, “Self-catalyzed hydrogenolysis of nickelocenefunctional metal coating of three-dimensional nanosystems at low temperature”, J. Electrochem. Soc., 155 (2008) D580.
Hydrogen Energy, 35 (2010) 5490-5497.
[72] C. Y. Chen, K. Y. Lin, W. T. Tsai, J. K. Chang, C. M. Tsen, “Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite”, Int. J. Hydrogen Energy, 35 (2010) 5490-5497.
[73] Z. Sun, Z. Liu, B. Han, Y. Wang, J. Du, Z. Xie, G. Han, “Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water”, Adv. Mater., 17 (2005) 928-932.
[74] C. H. Yen, X. Cui, H. B. Pan, S. Wang, Y. Lin, C. M. Wai, “Deposition of platinum nanoparticles on carbon nanotubes by supercritical fluid method”, J. Nanosci. Nanotechnol., 11 (2005) 1852-1857.
[75] Y. Lin, X. Cui, C. Yen, C. M. Wai, “Platinum carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells”, J. Phys. Chem. B, 109 (2005) 14410-14415.
[76] A. Bayrakceken, U. Kitkamthorn, M. Aindowb, C. Erkey, “Decoration of multi-wall carbon nanotubes with platinum nanoparticles using supercritical deposition with thermodynamic control of metal loading”, Scr. Mater., 56 (2007) 101-103.
[77] A. Bayrakceken, A. Smirnova, U. Kitkamthorn, M. Aindowb, L. Turker, I. Eroglu, C. Erkey, “Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique”, J. Power Sources, 179 (2008) 532-540.
[78] T. Machino, W. Takeuchi, H. Kano1, M. Hiramatsu, M. Hori, “Synthesis of Platinum Nanoparticles on Two-Dimensional Carbon Nanostructures”, Appl. Phys. Express, 2 (2009) 025001.
[79] Y. Lin, X. Cui , C. H. Yen, C. M. Wai, “PtRu carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells”, Langmuir, 21 (2005) 11474-11479.
[80] G. An, P. Yu, L. Mao, Z. Sun, Z. Liu, S. Miao, Z. Miao, K. Ding, “Synthesis of PtRu carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells”, Carbon, 45 (2007) 536-542.
[81] A. Niu, Y. Han, J. Wu, N. Yu, Q. Xu, “Synthesis of one-dimensional carbon nanomaterials wrapped by silver nanoparticles and their antibacterial behavior”, J. Phys. Chem. C, 114 (2010) 12728-12735.
[82] K. Miwa, N. Ohba, S. Towata, Y. Nakamori, S. Orimo, “First-principles study on copper-substituted lithium borohydride, (Li1−xCux)BH4”, J. Alloys Compd., 404-406 (2005) 140-143.
|