博碩士論文 963403018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:18.221.11.166
姓名 鄧應揚(Ying-yang Teng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 太陽能多晶矽晶錠固化生長之熱流場與雜質輸送研究
(Investigation of thermal-fluid and impurity concentration distributions for growing the solar multicrystalline Siingots)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多晶矽太陽能電池目前仍是市佔率最高的太陽能電池。太陽能電池發電為達到市電平價(grid parity)的目標,必須提升晶片品質並降低生產成本。在多晶矽晶片中常見高濃度的碳與氧成分,會造成差排與熱施體,碳與氧是主要影響晶碇品質的雜質。
本研究以有限體積法(FVM)模擬定向固化系統(DSS)爐體內熱流場、氧雜質、碳雜質與氧化矽氣體濃度場。而且模擬預估碳與氧雜質濃度,與長晶業者提供實驗量測多晶矽晶碇內的碳與氧雜質濃度相當一致。模擬結果顯示熔湯對流主要由浮力所造成,隨著生長過程對流形態會改變。本研究提出修改爐體熱場之設計,可增加熔湯對流的強度,使碳雜質分佈較均勻。修改熱場爐體長成晶片製作之太陽能電池,其效率較原設計爐體所製成太陽能電池效率提昇1.8%。
晶碇固化時隨固化分率增加,熔湯與坩堝接觸面積會減少,使熔湯內氧濃度降低。低固化分率時,高爐壓下熔湯內氧濃度較低爐壓者高。高固化分率時,因為氬氣冷卻自由表面熔湯的效果,使高爐壓下熔湯內氧濃度較低爐壓者低。因此,爐壓在晶體生長過程可適度調整達到更佳的控氧目的。增加氬氣流量可將更多自由表面氣化的氧化矽氣體帶至爐外,而降低氧濃度。本研究在不增加氬氣流量情形下,藉由簡單的氬氣導流設計增加自由表面上方氬氣流速,可獲得之降氧濃度效果與增加25%氬氣流量時相似,也可達到控氧與改善晶碇品質的效能。
摘要(英) The silicon (Si) solar cell is still the highest market share nowadays. To accomplish the goal of grid parity, for the solar cell, the wafer quality has to improve, and the production cost has to reduce. The high concentration of carbon and oxygen impurity cause the dislocation and thermal donor in the mc-Si wafer, respectively. The carbon and oxygen are the main impurity for affecting the efficiency of solar cell.
The simulations of thermal flow field, carbon concentration, oxygen concentration and silicon oxide concentration in directional solidification system (DSS) are carried out by the finite volume method (FVM) in this study. The distributions of carbon and oxygen concentration in the grown ingot were measured by the SAS Company and the measurement results are compared with that of the simulation predictions. The simulation results are in good agreement with the experimental ones. The simulation shows that the melt convection is induced by buoyancy force. The flow pattern in the melt changes during the growth process. In order to improve the uniformity of carbon distribution in the melt, a heat insulation of crucible is used to increase the temperature gradient and vortex intensity of melt. Using wafers of the whole ingot obtained from the modified case, the average conversion efficiency of solar cells can be improved up to 1.8% of the one of standard case.
As the solidification fraction enlarges, the oxygen concentration in the melt diminishes, because of the reduction in the amount of crucible surface immersed below the silicon melt. When the solidification fraction is small, the oxygen concentration is higher with a higher furnace pressure than with a lower one due to there being less SiO evaporation at the free surface. When the solidification fraction increases, because of the cooling effect of the argon gas, the oxygen concentration is smaller when the furnace pressure is higher rather than lower. Hence, to adjust variably the furnace pressure during the mc-Si ingot growth is good method for reducing the oxygen concentration.
To increase the argon flow rate can bring more evaporated SiO gas above the free surface outwards the furnace; hence the oxygen concentration in the melt is decrease. In the present study, the gas guiding plate is used to increase the argon velocity above the free surface. The effect of reducing oxygen concentration for the gas guiding plat is similar to the one of increasing the 25% amount of original argon flow rate. The gas guiding plate can decrease the oxygen concentration without increase the argon flow rate, the furnace enhancement can be used on advancing the wafer’s quality.
關鍵字(中) ★ 太陽能
★ 多晶矽
★ 數值模擬
關鍵字(英) ★ numerical simulation
★ multicrystallinne silicon (mc-Si)
★ Solar energy
論文目次 目錄
摘要 i
Abstract ii
目錄 v
圖目錄 vii
表目錄 xii
符號說明 xiii
第一章 緒論 1
1-1 研究背景與文獻回顧 1
1-1-1 多晶矽太陽能電池品質之研究概況 2
1-1-2 定向固化法生長多晶矽晶碇研究概況 5
1-1-3 定向固化法生長多晶矽晶碇碳與氧雜質輸送研究概況 9
1-2 研究動機與目的 10
第二章 數學模式 16
2-1 物理模式 16
2-2 假設條件與統禦方程式 16
2-3 邊界條件 19
2-3-1 溫度邊界條件 19
2-3-2 流場邊界條件 22
2-4 雜質濃度邊界條件 22
2-4-1 堝壁處氧雜質 22
2-4-2 液氣界面處氧雜質 23
2-4-3 固液界面處雜質 24
2-5 數值模式 24
2-6 數值計算結果驗證 28
第三章 結果與討論 36
3-1 標準型DSS多晶爐模擬與實驗結果 36
3-2 修改型DSS多晶爐模擬與實驗結果 37
3-3 固液界面處溫度梯度模擬結果 38
3-4 標準型DSS多晶爐碳雜質濃度分佈模擬 39
3-5 修改型DSS多晶爐碳雜質濃度模擬結果 40
3-6 碳雜質模擬與實驗驗證結果 41
3-7 爐壓對多晶矽晶碇氧雜質分佈的影響 41
3-8 控制氧雜質濃度的導流設計 45
3-9 提昇多晶矽晶碇晶片品質的成效 47
第四章 結論 76
參考文獻 80
附錄 定向固化法氧雜質濃度的熱力分析 91
個人著作 94
參考文獻 [1]A. Muller, M. Ghosh, R. Sonnenschein and P. Woditsch, "Silicon for photovoltaic applications", Materials Science and Engineering B, Vol. 134, pp. 257 - 262, 2006
[2]W. G. J. H. M. van Sark, G. W. Brandsen, M. Fleuster and M. P. Hekkert, "Analysis of the silicon market: Will thin films profit?" Energy Policy, Vol. 35, pp. 3121-3125, 2007
[3]W. Hoffmann, "PV solar electricity industry: Market growth and perspective", Solar Energy Materials & Solar Cells, Vol. 90, pp. 3285-3311, 2006
[4]W. Koch, A. L. Endros, D. Franke, C. Haßler, J. P. Kalejs and H. J. Moller, Bulk Crystal Growth and Wafering for PV, 2003.
[5]K. Arafune, E. Ohishi, H. Sai, Y. Ohshita and M. Yamaguchi, "Directional solidification of polycrystalline silicon ingots by successive relaxation of supercooling method", Journal of Crystal Growth, Vol. 308, pp. 5-9, 2007
[6]F. Ferrazza, "Large size multicrystalline silicon ingots", Solar Energy Materials & Solar Cells, Vol. 72, pp. 77-81, 2002
[7]L. L. Kazmerski, "Solar photovoltaics R&D at the tipping point: A 2005 technology overview", Journal of Electron Spectroscopy and Related Phenomena, Vol. 150, pp. 105-135, 2006
[8]K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki and K. Nakajima, "Grain growth behaviors of polycrystalline silicon during melt growth processes", Journal of Crystal Growth, Vol. 266, pp. 441-448, 2004
[9]K. Fujiwara, W. Pan, N. Usami, K. Sawada, M. Tokairin, Y. Nose, A. Nomura, T. Shishido and K. Nakajima, "Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting", Acta Materialia, Vol. 54, pp. 3191-3197, 2006
[10]K. Fujiwara, W. Pan, K. Sawada, M. Tokairin, N. Usami, Y. Nose, A. Nomura, T. Shishido and K. Nakajima, "Directional growth method to obtain high quality polycrystalline silicon from its melt", Journal of Crystal Growth, Vol. 292, pp. 282-285, 2006
[11]M.Y. Ghannam, "The impact of grain size on the photogenerated current in polycrystalline silicon solar cells", Renewable Energy, Vol. 6, pp. 601-605, 1995
[12]J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido and S. Tsurekawa, "Electron-beam-induced current study of grain boundaries in multicrystalline silicon", Journal of Applied Physics, Vol. 96, pp. 5490-5495, 2004
[13]H. B. Xu, R .J. Hong, B. Ai, L. Zhuang and H. Shen, "Application of phosphorus diffusion gettering process on upgraded metallurgical grade Si wafers and solar cells", Applied Energy, Vol. 87 pp. 3425-3430, 2010
[14]A. Bentzen and A. Holt, "Overview of phosphorus diffusion and gettering in multicrystalline silicon", Materials Science and Engineering B, Vol. 159-160, pp. 228-234, 2009
[15]M. Seibt, D. Abdelbarey, V. Kveder, C. Rudolf, P. Saring, L. Stolze and O. Voß, "Interaction of metal impurities with extended defects in crystalline silicon and its implications for gettering techniques used in photovoltaics", Materials Science and Engineering B, Vol. 159-160, pp. 264-268, 2009
[16]A. Haarahiltunen, H. Savin, M. Yli-Koski, H. Talvitie, M. I. Asghar and J. Sinkkonen, "As-grown iron precipitates and gettering in multicrystalline silicon", Materials Science and Engineering B, Vol. 159-160, pp. 248-252, 2009
[17]H. Wang, H. Yang, H. Yu and G. Chen, "Influence of gettering and passivation on uniformity of the electrical parameters in monolithic multicrystalline silicon solar cell", Solid-State Electronics, Vol. 47, pp. 1363-1367, 2003
[18]I. Perichaud, "Gettering of impurities in solar silicon", Solar Energy Materials & Solar Cells, Vol. 72, pp. 315-326, 2002
[19]H. Yang, H. Wang, G. Chen, H. Yu and J. Xib, "A study of electrical uniformity for monolithic polycrystalline silicon solar cells", Solar Energy Materials & Solar Cells, Vol. 71, pp. 407-412, 2002
[20]S. M. Joshi, U. M. Gosele and T.Y. Tan, "Extended high temperature Al gettering for improvement and homogenization of minority carrier diffusion lengths in multicrystalline Si", Solar Energy Materials & Solar Cells, Vol. 70, pp. 231-238, 2001
[21]A. Lin, X. Wong, Y. Li and L. Chou, "Passivation and gettering of defective crystalline silicon solar cell", Solar Energy Materials & Solar Cells, Vol. 62, pp. 149-155, 2000
[22]D. Macdonald, A. Cuevas and F. Ferrazza, "Response to phosphorus gettering of di?rent regions of cast multicrystalline silicon ingots", Solid-State Electronics, Vol. 43, pp. 575-581, 1999
[23]S. Martinuzzi, I. Perichaud and F. Warchol, "Hydrogen passivation of defects in multicrystalline silicon solar cells", Solar Energy Materials & Solar Cells, Vol. 80, pp. 343-353, 2003
[24]N. M'Gafad, H. Amzil, D. Sayah, D. Ballutaud and M. Barbe, "Passivation of the grain boundary electrical activity in multicrystalline silicon: aluminum treatment efficiency", Solid-State Electronics, Vol. 43, pp. 857-864, 1999
[25]A. A. Istratov, T. Buonassisi, M. D. Pickett, M. Heuer and E. R. Weber, "Control of metal impurities in "dirty" multicrystalline silicon for solar cells", Materials Science and Engineering B, Vol. 134, pp. 282 - 286, 2006
[26]S. Pizzini, "Towards solar grade silicon: Challenges and benefits for low cost photovoltaics", Solar Energy Materials & Solar Cells, Vol. 94, pp. 1528-1533, 2010
[27]A. F. B. Braga, S. P. Moreira, P. R. Zampieri, J. M. G. Bacchin and P. R. Mei, "New processes for the production of solar-grade polycrystalline silicon: A review", Solar Energy Materials & Solar Cells, Vol. 92, pp. 418–424, 2008
[28]T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi, S. Glunz, S. Rein, W. Wettling, I. Yamasaki, H. Sawai, H. Ohtuka and T. Warabisako, "Suppression of light degradation of carrier lifetimes in low-resistivity CZ-Si solar cells", Solar Energy Materials & Solar Cells, Vol. 65 pp. 277 - 285, 2001
[29]D. Yang, L. Li, X. Ma, R. Fan, D. Que and H. J. Moeller, "Oxygen-related centers in multicrystalline silicon", Solar Energy Materials & Solar Cells, Vol. 62, pp. 37-42, 2000
[30]Z. Xi, J. Tang, H. Deng, D. Yang and D. Que, "A model for distribution of oxygen in multicrystalline silicon ingot grown by directional solidification", Solar Energy Materials & Solar Cells, Vol. 91, pp. 1688 - 1691, 2007
[31]R. Kvande, L. Arnberg and C. Martin, "Influence of crucible and coating quality on the properties of multicrystalline silicon for solar cells", Journal of Crystal Growth, Vol. 311, pp. 765-768, 2009
[32]H. Matsuo, R. B. Ganesh, S. Nakano, L. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi and K. Kakimoto, "Thermal dynamical analysis of oxygen incorporation from a quartz crucible during solidification of multicrystalline silicon for solar cell", Journal of Crystal Growth, Vol. 310, pp. 4666 - 4671, 2008
[33]H. Matsuo, R. B. Ganesh, S. Nakano, L. Liu, K. Arafune, Y. Ohshita, M. Yamaguchi and K. Kakimoto, "Analysis of oxygen incorporation in unidirectionally solidified multicrystalline silicon for solar cells", Journal of Crystal Growth, Vol. 310, pp. 2204 - 2208, 2008
[34]R. Kvande, O. Mjos and B. Ryningen, "Growth rate and impurity distribution in multicrystalline silicon for solar cells", Materials Science and Engineering A, Vol. 413-414, pp. 545–549, 2005
[35]S. Pizzini, A. Sandrinelli, M. Beghi, D. Narducci, F. Allegretti, S. Torchio, G. Fabbri, G. P. Ottaviani, F. Demartin and A. Fusi, "Influence of Extended Defects and Native Impurities on the Electrical Properties of Directionally Solidified Polycrystalline Silicon", Journal of The Electrochemical Society, Vol. 135, pp. 155-165, 1988
[36]David E. Bornside, Robert A. Brown, Toshiyuki Fujiwara, Hideki Fujiwara and and Takayuki Kubo, "The Effects of Gas-Phase Convection on Carbon Contamination of Czochralski-Grown Silicon", Journal of The Electrochemical Society, Vol. 142, pp. 2790-2804, 1995
[37]A. D. Smirnov and V. V. Kalaev, "Analysis of impurity transport and deposition processes on the furnace elements during Cz silicon growth", Journal of Crystal Growth, Vol. 311, pp. 829–832, 2009
[38]Lijun Liu, Satoshi Nakano and and Koichi Kakimoto, "Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells", Journal of Crystal Growth, Vol. 310, pp. 2192-2197, 2008
[39]G. Du, L. Zhou, P. Rossetto and Y. Wan, "Hard inclusions and their detrimental effects on the wire sawing process of multicrystalline silicon", Solar Energy Materials & Solar Cells, Vol. 91, pp. 1743–1748, 2007
[40]R. W. Miles, K. M. Hynes and I. Forbes, "Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues", Progress in Crystal Growth and Characterization of Materials, Vol. 51, pp. 1-42, 2005
[41]鄧應揚、陳志臣, "太陽能多晶矽晶碇發展與提昇晶片品質研究", 化工 (台灣化學工程學會) Chemical Engineering (The Taiwan I. Ch. E.), Vol. 57, pp. 1, 2010
[42]M. Apel, D. Franke and I. Steinbach, "Simulation of the crystallisation of silicon ribbons on substrate", Solar Energy Materials & Solar Cells, Vol. 72, pp. 201–208, 2002
[43]I. Steinbach and M. Apel, "Phase-field simulation of rapid crystallization of silicon on substrate", Materials Science and Engineering A, Vol. 449-451 pp. 95-98, 2007
[44]H. Kasajima, E. Nagano, T. Suzuki, S. G. Kim and W.T. Kim, "Phase-field modeling for facet dendrite growth of silicon ", Science and Technology of Advanced Materials, Vol. 4, pp. 553-557, 2003
[45]P. Chen, Y. L. Tsai and C.W. Lan, "Phase field modeling of growth competition of silicon grains", Acta Materialia, Vol. 56, pp. 4114–4122, 2008
[46]J. A. Warren, R. Kobayashi, A. E. Lobkovsky and W. C. Carter, "Extending phase field models of solidification to polycrystalline materials", Acta Materialia, Vol. 51, pp. 6035-6058, 2003
[47]F. Dupret, P. Nicodeme, Y. Ryckmans, P. Wouters and M. J. Crochet, "Global modelling of heat transfer in crystal growth furnaces", Int. J. Heat Mass Transfer, Vol. 33, No. 9, pp. 1849-1871, 1990
[48]L. Liu and K. Kakimoto, "Partly three-dimensional global modeling of a silicon Czochralski furnace. I. Principles, formulation and implementation of the model", International Journal of Heat and Mass Transfer, Vol. 48, pp. 4481-4491, 2005
[49]X. Cui and B. Q. Li, "You have full text access to this contentA parallel Galerkin boundary element method for surface radiation and mixed heat transfer calculations in complex 3-D geometries ", International Journal for Numerical Methods in Engineering, Vol. 61, pp. 2020-2044, 2004
[50]D. Franke, T. Rettelbach, C. Häßler, W. Koch and A. Müller, "Silicon ingot casting: process development by numerical simulations ", Solar Energy Materials & Solar Cells, Vol. 72, pp. 83-92, 2002
[51]I. Steinbach, M. Apel, T. Rettelbach and D. Franke, "Numerical simulations for silicon crystallization processes—examples from ingot and ribbon casting", Solar Energy Materials & Solar Cells, Vol. 72, pp. 59 - 68, 2002
[52]L. Liu, S. Nakano and K. Kakimoto, "Dynamic simulation of temperature and iron distributions in a casting process for crystalline silicon solar cells with a global model", Journal of Crystal Growth, Vol. 292, pp. 515 - 518, 2006
[53]H. Miyazawa, L. Liu and K. Kakimoto, "Numerical analysis of influence of crucible shape on interface shape in a unidirectional solidification process", Journal of Crystal Growth, Vol. 310, pp. 1142 - 1147, 2008
[54]H. Miyazawa, L. Liu, S. Hisamatsu and K. Kakimoto, "Numerical analysis of influence of tilt of crucibles on interface shape and fields of temperature and velocity in a unidirectional solidification process", Journal of Crystal Growth, Vol. 310, pp. 1034 - 1039, 2008
[55]B. Wu, N. Stoddard, R. Ma and R. Clark, "Bulk multicrystalline silicon growth for photovoltaic(PV) application", Journal of Crystal Growth, Vol. 310, pp. 2178 - 2184, 2008
[56]N. Dropka, W. Miller, R. Menzel and U. Rehse, "Numerical study on transport phenomena in a directional solidification process in the presence of travelling magnetic fields", Journal of Crystal Growth, Vol. 312, 2010
[57]D. Vizman, J. Friedrich and G. Mueller, "3D time-dependent numerical study of the influence of the melt flow on the interface shape in a silicon ingot casting process", Journal of Crystal Growth, Vol. 303, pp. 231 - 235, 2007
[58]A.T. Kuliev, N.V. Durnev and V.V. Kalaev, "Analysis of 3D unsteady melt flow and crystallization front geometry during a casting process for silicon solar cells", Journal of Crystal Growth, Vol. 303, pp. 236-240, 2007
[59]S. Hisamatsu, H. Matsuo, S. Nakano and K. Kakimoto, "Numerical analysis of the formation of Si3N4 and Si2N2O during a directional solidification process in multicrystalline silicon for solar cells", Journal of Crystal Growth, Vol. 311, pp. 2615-2620, 2009
[60]H. Matsuo, R. B. Ganesh, S. Nakano, L. Liu, K. Arafune, Y. Ohshita, M. Yamaguchi and K. Kakimoto, "Effect of crucible rotation on oxygen concentration during unidirectional solidification process of multicrystalline silicon for solar cells", Journal of Crystal Growth, Vol. 311, pp. 1123 - 1128, 2009
[61]L. Liu, S. Nakano and K. Kakimoto, "Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells", Journal of Crystal Growth, Vol. 310, pp. 2192 - 2197, 2008
[62]B. Gao, S. Nakano and K. Kakimoto, "Global simulation of coupled carbon and oxygen transport in a unidirectional solidification furnace for solar cells", Journal of The Electrochemical Society, Vol. 157, pp. H153-H159, 2010
[63]Ying-Yang Teng, Jyh-Chen Chen, Chung-Wei Lu, Chuck Hsu and and Chi-Yung Chen, "Numerical and experimental study for improving the concavity of crystalline front in the multicrystalline silicone ingots during the directional solidification process", pp. submit to Solar Energy Materials and Solar Cells, 2010
[64]J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley and M.A. Zingale, "Adaptive low Mach number simulations of nuclear flame microphysics", Journal of Computational Physics, Vol. 195, pp. 677-694, 2004
[65]R. Klein, "Semi-Implicit Extension of a Godunov-Type Scheme Based on Low Mach Number Asymptotics I : One-Dimensional Flow", Journal of Computational Physics, Vol. 121, pp. 213-237, 1995
[66]B. Debusschere and C. J. Rutland, "Turbulent scalar transport mechanisms in plane channel and Couette flows", International Journal of Heat and Mass Transfer, Vol. 47, pp. 1771-1781, 2004
[67]T. Van Renterghem and D. Botteldooren, "Prediction-step staggered-in-time FDTD : An efficient numerical scheme to solve the linearised equations of fluid dynamics in outdoor sound propagation", Applied Acoustics, Vol. 68, pp. 201–216, 2007
[68]A. B. Dhia, È. Duclairoir, G. Legendre and J. Mercier, "Time-harmonic acoustic propagation in the presence of a shear flow", Journal of Computational and Applied Mathematics 204 (2007), Vol. 204, pp. 428-439, 2007
[69]T. Ph. Bui, W. Schroder and M. Meinke, "Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations", Computers & Fluids, Vol. 37, pp. 1157-1169, 2008
[70]A. S. B. Dhia, J. F. Mercier, F. Millot and S. Pernet, "A low-Mach number model for time-harmonic acoustics in arbitrary flows", Journal of Computational and Applied Mathematics, Vol. 234, pp. 1868-1875, 2010
[71]R. J. Riley and G. P. Neitzel, "Instability of thermocapillary-buoyancy convection in shallow layer. Part 1. Characterization of steady and oscillatory instabilities", Journal of fluid mechanics, Vol. 359, pp. 143 - 164, 1998
[72]A. Raufeisen, M. Breuer, T. Botsch and A. Delgado, "DNS of rotating buoyancy–and surface tension–driven flow", International Journal of Heat and Mass Transfer, Vol. 51, pp. 6219-6234, 2008
[73]M. Wolfshtein, "The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient", International Journal of Heat and Mass Transfer, Vol. 12, pp. 301, 1969
[74]A. D. Smirnov and V. V. Kalaev, "Development of oxygen transport model in Czochralski growth of silicon crystals", Journal of Crystal Growth, Vol. 310, pp. 2970-2976, 2008
[75]S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor and Francis, Philadelphia, PA, USA 1980.
[76]C. A. J. Fletcher, S. A. Orszag, M. Holt and R. Glowinski, Computational Techniques for fluid dynamics, Springer-Verlag, Berlin Heidelberg New York, 1991.
[77]V. V. Kalaev, I. Yu. Evstratov and Yu. N. Makarov, "Gas flow effect on global heat transport and melt convection in Czochralski silicon growth", Journal of Crystal Growth, Vol. 249, pp. 87 - 99, 2003
[78]V. V. Kalaev, D. P. Lukanin, V.A. Zabelin, Yu. N. Makarov, J. Virbulis, E. Dornberger and W.v. Ammon, "Calculation of bulk defects in CZ Si growth: impact of melt turbulent fluctuations", Journal of Crystal Growth, Vol. 250, pp. 203-208, 2003
[79]H. Miyazawa, L. Liu and K. Kakimoto, "Numerical Investigation of the Influence of Material Property of a Crucible on Interface Shape in a Unidirectional Solidification Process", Crystal Growth & Design, Vol. 9, No. 1, pp. 6, 2009
[80]X. Chen, S. Nakano, L. Liu and K. Kakimoto, "Study on thermal stress in a silicon ingot during a unidirectional solidification process", Journal of Crystal Growth, Vol. 310, pp. 4330 - 4335, 2008
[81]A. D. Smirnov and V. V. Kalaev, "Analysis of impurity transport and deposition processes on the furnace elements during Cz silicon growth", Journal of Crystal Growth, Vol. 311, pp. 829-832, 2009
[82]C.Y. Chen, Private Communication, Sino-American Silicon Products Inc., 2008
指導教授 陳志臣(Jyh-chen Chen) 審核日期 2011-6-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明