參考文獻 |
REFERENCES
1.B. E. Maile, W. Henschel, H. Kurz, B. Rienks, R. Polman, and P. Kaars, "Sub-10 nm Linewidth and Overlay Performance Achieved with a Fine-Tuned EBPG-5000 TFE Electron Beam Lithography System," Japanese Journal of Applied Physics 39, 6836-6842 (2000).
2.G. Lerondel, A. Sinno, L. Chassagne, S. Blaize, P. Ruaux, A. Bruyant, S. Topcu, P. Royer, and Y. Alayli, "Enlarged near-field optical imaging," Journal of Applied Physics 106, 044913 - 044913-044914 (2009).
3.A. Sinno, P. Ruaux, L. Chassagne, S. Topcu, Y. Alay, G. Lerondel, S. Blaize, A. Bruyant, and P. Royer, "Enlarged atomic force microscopy scanning scope: Novel sample-holder device millimeter range," Review of Scientific Instruments 78, 095107 (2007).
4.A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hosfeld, and M. Niggemann, "Some application cases and related manufacturing techniques for optically functional microstructures on large areas," Optical Engineering 13, 2525-2533 (2004).
5.J. Tersoff, and D. R. Hamann, "Theory of the scanning tunneling microscope," Physical Review B 31, 805–813 (1985).
6.F. Felten, G. A. Schneider, J. M. Saldana, and S. V. Kalinin, "Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy," Journal of Applied Physics 96, 104-108 (2004).
7.L. L. Chu, and Y. B. Gianchandani, "A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing," Journal of Micromechanics and Microengineering 13, 279-285 (2003).
8.F. Zhang, H. I. Smith, and J. Dai, "Fabrication of high-secondary-electron-yield grids for spatial-phase-locked electron-beam lithography," Journal of Vacuum Science & Technology B 23, doi:10.1116/1111.2110341 (2005).
9.S. K. Kuo, C. C. Hung, C. C. Lin, and W. H. Yang, "Development of a nano-displacement measurement system," Measurement 40, 256-263 (2007).
10.C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," Journal of Vacuum Science & Technology B 19, 2335-2341 (2001).
11.L. F. Johnson, G. W. Kammlott, and K. A. Ingersoll, "Generation of periodic surface corrugations," Applied Optics 17, 1165 (1978).
12.S. H. Zaidi, and S. R. J. Brueck, "Multiple-exposure interometric lithography," Journal of Vacuum Science & Technology B 11, 658 (1993).
13.H. H. Solak, D. He, W. Li, S. Singh-Gasson, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Applied Physics Letters 75, 2328 (1999).
14.X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, "Polarization Interferometer for Measuring Small Displacement," IEEE Transactions on Instrumentation and Measurement 50, 865-871 (2001).
15.Y. Wang, Q. Wang, P. Li, J. Lan, and K. Guo, "Photorefractive holographic interferometry for the measurement of object tilt and in-plane displacement," Proceedings of SPIE 4292, 230-236 (2002).
16.N. K. Mohan, and P. Rastogi, "Phase-shifting whole-field speckle photography technique for the measurement of in-plane deformations in real time," Optics Letters 27, 565-567 (2002).
17.H. J. Wang, J. Y. Chen, C. M. Liu, and L. W. Chen, "Phase-shifting moire interferometry based on a liquid crystal phase modulator," Optical Engineering 44, 015602 (2005).
18.W. C. Kuo, C. Chou, and H. T. Wu, "Optical heterodyne surface-plasmon resonance biosensor," Optics Letters 28, 1329-1331 (2003).
19.C. C. Wu, C. C. Hsu, J. Y. Lee, H. Y. Chen, and C. L. Dai, "Optical heterodyne laser encoder with sub-nanometer resolution," Measurement Science and Technology 19, 045305 (2008).
20.F. Restagno, J. Crassous, E. Charlaix, and M. Monchanin, "A new capacitive sensor for displacement measurement in a surface-force apparatus," Measurement Science and Technology 12, 16-22 (2001).
21.D. E. Duffy, "Moire Gauging of In-Plane Displacement Using Double Aperture Imaging," Applied Optics 11, 1778-1781 (1972).
22.T. E. Carlsson, J. Gustafsson, and N. H. Abramson, "Method for fringe enhancement in holographic interferometry for measurement of in-plane displacements," Proceedings of SPIE 37, 1845-1848 (1998).
23.Lion Precision, "Lion Precision white paper 2004 User manual and literature," (2004).
24.R. Tripathi, G. S. Pati, A. Kumar, and K. Singh, "In-plane displacement measurement using a photorefractive speckle correlator," Optics Communications 149, 355-365 (1998).
25.I. A. Sokolov, "Adaptive photodetectors: novel approach for vibration measurements," Measurement 27, 13-19 (2000).
26.D. Crespo, J. Alonso, and E. Bernabeu, "Reflection optical encoders as three-grating moire’ systems," Applied Optics 39, 3805-3813 (2000).
27.L. Liwei, A. P. Pisano, and R. HoweT., "A micro strain gauge with mechanical amplifier," Journal of Microelectromechanical Systems 6, 313 - 321 (1997).
28.Hewlett Packard, "5526A Laser Measurement System User's Guide," (1980).
29.Y. Yee, H. J. Nam, S. H. Lee, J. U. Bu, and J. W. Lee, "PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage," Sensors and Actuators A 89, 166-173 (2001).
30.J. W. Judy, D. L. Polla, and W. P. Robbins, "A linear piezoelectric stepper motor with submicrometer step size and centimeter travel range," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 37, 428 - 437 (1990).
31.L. Chassagne, S. Topcu, Y. Alayli, and P. Juncar, "Highly accurate positioning control method for piezoelectric actuators based on phase-shifting optoelectronics," Measurement Science and Technology 16, 1771-1777 (2005).
32.S. S. Aphale, S. Devasia, and S. O. R. Moheimani, "High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties," Nanotechnology 19, 125503 (2008).
33.R. K. Heilmann, C. G. Chen, P. TKonkola, and M. L. Schattenburg, "Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders," Nanotechnology 15, 504-511 (2004).
34.J. R. Matez, R. S. Crandall, B. Brycki, and G. A. D. Briggs, "Bimorph‐driven x–y–z translation stage for scanned image microscopy," Review of Scientific Instruments 58, 567 - 570 (1987).
35.M. Holmes, R. Hocken, and D. Trumper, "The long-range scanning stage: a novel platform for scanned-probe microscopy," Precision Engineering 24, 191-209 (2000).
36.S. Yoo, and S. w. Kim, "Self-calibration algorithm for testing out-of-plane errors of two-dimensional profiling stages," International Journal of Machine Tools and Manufacture 44, 767-774 (2004).
37.C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, "Reflection type heterodyne grating interferometry for in-plane displacement measurement," Optics Communications 281, 2582–2589 (2008).
38.J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, "Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution," Sensors and Actuators A 137, 185–191 (2007).
39.F. P. Chiang, and R. M. Juang, "Laser speckle interferometry for plate bending problems," Applied Optics 23, 997 (1976).
40.S. Hecop, "Laser interferometric system for displacement measurement with high precision," Nanotechnology 2, 88-95 (1991).
41.J. H. Song, K. C. Kim, and S. H. Kim, "Reducing tilt errors in moire’ linear encoders using phase-modulated grating," Review of Scientific Instruments 71, 2296-2300 (2000).
42.D. Lin, X. Jiang, and F. Xie, "High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology," Optics Express 12, 5729-5934 (2004).
43.C. K. Lee, G.-Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, w. H. Hsiao, H. C. Shie, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, "A high performance doppler interferometer for advanced optical storage system," Japanese Journal of Applied Physics 38, 1730-1741 (1998).
44.J. A. Gilbert, R. L. Shepherd, H. J. Cole, and P. R. Ashley, "Three-dimensional displacement measurement using diffractive optic interferometry," Optical Engineering 36, 3336–3342 (1997).
45.S. T. Lin, "Three-dimensional displacement measurement using a newly designed moire interferometer," Optcal Engineering 40, 822-826 (2001).
46.N. K. Mohan, J. S. Darlin, M. H. M. Ara, M. P. Kothiyal, and R. S. Sirohi, "Speckle photography with BaTiO3 crystal for the measurement of in-plane displacement field distribution of distant," Optics and Lasers in Engineering 29, 211-216 (1998).
47.K. C. Fan, and Y. Zhao, "A laser straightness measurement system using optical fiber and modulation techniques," International Journal of Machine Tools & Manufacture 40, 2073–2081 (2000).
48.C. M. Wu, "Heterodyne interferometric system with subnanometer accuracy for measurement of straightness," Applied Optics 43, 3812-3816 (2004).
49.K. C. Fan, C. L. Chu, J. L. Liao, and J. I. Mou, "Development of a high-precision straightness measuring system with DVD pick-up head," Measurement Science and Technology 14, 47–54 (2003).
50.K. Matsuda, M. Roy, T. Eiju, J. W. O’Byrne, and C. J. R. Sheppard, "Straightness measurements with a reflection confocal optical system—an experimental study," Applied Optics 41, 3966-3970 (2002).
51.Q. Feng, B. Zhang, and C. Kuang, "A straightness measurement system using a single-mode 'ber-coupled laser module," Optics & Laser Technology 36, 279 – 283 (2004).
52.J. Y. Lee, and M. P. Lu, "Optical heterodyne grating shearing interferometry for long-range positioning applications," Optics Communications 284, 857-862 (2011).
53.Y. Jourlin, J. Jay, and O. Parriaux, "Compact diffractive interferometric displacement sensor in reflection," Precision Engineering 26, 1-6 (2002).
54.Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, "Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser," Measurement Science and Technology 16, 2030–2037 (2005).
55.X. Wang, X. Dong, J. Guo, and T. Xie, "Two-dimensional displacement sensing using a cross diffraction grating scheme," Journal of Optics A: Pure Pplied Optics 6, 106-111 (2004).
56.L. Chassagne, S. Topcu, Y. AlaylI, P. Juncar, G. Lerondel, S. Blaize, A. Bruyant, I. Stefanon, and P. Royer, "High accuracy optoelectronic control system for near field characterization of millimeter long wave guiding structures," Proceedings of SPIE 5858, 585806 (2005).
57.H. C. Yeh, W. T. Ni, and S. s. Pan, "Digital closed-loop nanopositioning using rectilinear flexure stage and laser interferometry," Control Engineering Practice 13, 559-566 (2004).
58.C. M. Liaw, R. Y. Shue, H. C. Chen, and S. C. Chen, "Development of a linear brushless DC motor drive with robust position control," IEE Proceedings of Electric Power Applications 148, 111-118 (2001).
59.S. H. Chang, and Y. C. Wang, "Design and performance of a piezoelectric actuated precise rotary positioner," IEEE International Conference on Mechatronics, 2005. ICM '05., 313 - 317 (2005).
60.L. Chassagne, M. Wakim, S. Xu, S. Topcu, P. Ruaux, P. Juncar, and Y. Alayl, "A 2D nano-positioning system with sub-nanometric repeatability over the millimetre displacement range," Measurement Science and Technology 18, 3267–3272 (2007).
61.W. Arden, "Future semiconductor material requirements and innovations as projected in the ITRS 2005 roadmap," Materials Science and Engineering B 134, 104-108 (2006).
62.H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, "Quasi-common-optical-path heterodyne grating interferometer for displacement measurement," Measurement science and technology 21, 115304 (2010).
63.H. K. Teng, and K. C. Lang, "Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression," Optics Communications 280, 16-22 (2007).
64.R. A. Sprague, and C. L. Koliopoulos, "Time integrating acousto-optic correlator," Pplied Optics 15, 89-92 (1976).
65.D. C. Su, M. H. Chiu, and C. D. Chen, "Simple two-frequency laser," Precision Engineering 18, 161-163 (1996).
66.D. C. Su, M. H. Chiu, and C. D. Chen, "A heterodyne interferometer using an electro-optic modulator for measuring small displacements," Journal of Optics 27, 19-23 (1996).
67.M. Sargent, W. E. Lamb, and R. L. Fork, "Theory of a Zeeman laser I," Phys. Rev. 164, 436 (1967).
68.W. J. Bates, "A wavefront shearing interferometer," Proceedings of Physics Socoirty. 59, 940 (1947).
69.M. V. R. K. Murty, "The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a VisibleGas Laser Source " Pplied Optics 3, 531 (1964).
70.A. Teimel, "Technology and applications of grating interferometers in high-precision measurement," Precision Engineering 14, 147-154 (1992).
71.S. Yokozeki, and T. Suzuki, "Shearing Interferometer Using the Grating as the Beam Splitter," Pplied Optics 10, 1575 (1971).
72.C. M. B. Cordeiro, L. Cescato, A. A. Freschi, and L. Li, "Measurement of phase differences between the diffracted orders of deep relief gratings," Optics Express 28, 683-685 (2003).
73.K. Patorski, "Grating shearing interferometer with variable shear and fringe orientation," Applied Optics 25, 4192-4198 (1986).
74.C. F. Kao, C. C. Chang, and M. H. Lu, "Double-diffraction planar encoder by conjugate optics," Optical Engineering 44, 023603-023601-023607 (2005).
75.J. C. Wyant, "Double Frequency Grating Lateral Shear Interferometer," Applied Optics 12, 2057-2060 (1973).
76.V. Ronchi, "Forty Years of History of a Grating Interferometer," Applied Optics 3, 437-451 (1964).
77.T. K. Gaylord, and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proceedings of the IEEE 73, 894 - 937 (1985).
78.S. J. Friedman, B. Barwick, and H. Batelaan, "Focused-laser interferometric position sensor," Review of Scientific Instruments 76, 123106 - 123106-123105 (2005).
79.H. J. Pahk, D. S. Lee, and J. H. Park, "Ultra precision positioning system for servo motor–piezo actuator using the dual servo loop and digital filter implementation," International Journal of Machine Tools and Manufacture 41, 51-63 (2001).
80.C. M. Wu, J. Lawall, and R. D. Deslattes, "Periodic nonlinearity resulting from ghost reflections in heterodyne interferometry," Optics Communications. 215, 17-23 (2003).
81.W. Hou, "Optical parts and the nonlinearity in heterodyne interferometers," Precision Engineering 30, 337-346 (2006).
82.P. L. Teoh, B. Shirinzadeh, C. W. Foong, and G. r. Alici, "The measurement uncertainties in the laser interferometry-based sensing and tracking technique," Measurement 32, 135–150 (2002).
83.C. M. Wu, and R. D. Deslattes, "Analytical modeling of the periodic nonlinearity in heterodyne interferometry," Applied Optics 37, 6696 (1998).
84.T. Eom, T. Choi, K. Lee, H. Choi, and S. Lee, "A simple method for the compensation of the nonlinearity in the heterodyne interferometer," Measurement Science and Technology 13, 222-225 (2002).
85.H. L. Huang, C. H. Liu, .W. Y. Jywe, M. S. Wang, Y. R. Jeng, L. L. Duan, and T. H. Hsu, "Development of a DVD pickup-based four-degree-of freedom motion error measuring system for single-axis linear moving platform," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 224, 37-50 (2010).
86.R. Ramesh, M. A. Mannan, and A. N. Poo, "Error compensation in machine tools — a review Part I: geometric, cutting-force induced and fixture-dependent error," International Journal of Machine Tools & Manufacture 40, 1235-1256 (2000).
87.H. F. F. Castro and M. Burdekin, " Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer," International Journal of Machine Tools & Manufacture 43, 947-954 (2003).
|