參考文獻 |
[1] H. Bob and J. Nicola, “Brace yourself for the end of cheap oil”, New Scientist, Vol. 179, pp. 9-10, 2003.
[2] S.Z. Baykara, “Hydrogen as fuel: a critical technology?”, International Journal of Hydrogen Energy, Vol. 30, pp. 545-553, 2005.
[3] http://www.eere.energy.gov/topics/hydrogen_fuel_cells.html
[4] M. Momirlan and T.N. Veziroglu, “Current status of hydrogen energy”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 141-179, 2002.
[5] J.I. Levene, M.K. Mann, R.M. Margolis and A. Milbrandt, “An analysis of hydrogen production from renewable electricity sources”, Solar Energy, Vol. 81, pp. 773-780, 2007.
[6] T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy, Vol. 27(10), pp. 991-1022, 2002.
[7] R.G. Lemus and J.M.M Duart, “Updated hydrogen production costs and parities for conventional and renewable technologies”, International Journal of Hydrogen Energy, Vol. 35, pp. 3929-3936, 2010.
[8] R.D. Levie, “The electrolysis of water”, Journal of Electroanalytical Chemistry, Vol. 476(1), pp. 92-93, 1999.
[9] H. Ohya, M. Yatabe, M. Aihara, Y. Negishi and T. Takeuchi, “Feasibility of hydrogen production above 2500 K by direct thermal decomposition reaction in membrane reactor using solar energy”, International Journal of Hydrogen Energy, Vol. 27, pp. 369-376, 2002.
[10] M. Roeb, M. Neises, J.P. Sack, P. Rietbrock, N. Monnerie, J. Dersch, M. Schmitz and C. Sattler, “Operational strategy of a two-step thermochemical process for solar hydrogen production”, International Journal of Hydrogen Energy, Vol. 34, pp. 4537-4545, 2009.
[11] J. Fedorowski and W.R. Lacourse, “A review of post-column photochemical reaction systems coupled to electrochemical detection in HPLC”, Analytica Chimica Acta, Vol. 657, pp. 1-8, 2010.
[12] D. Dasa and T.N. Veziroglu, “Hydrogen production by biological processes: a survey of literature”, International Journal of Hydrogen Energy, Vol. 26, pp. 13-28, 2001.
[13] R.C. Saxena, D.K. Adhikari and H.B. Goyal, “Biomass-based energy fuel through biochemical routes: A review”, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 167-178, 2009.
[14] S. Licht, “Solar water splitting to generate hydrogen fuel-a photothermal electrochemical analysis”, International Journal of Hydrogen Energy, Vol. 30, pp. 459-470, 2005.
[15] P. Lianos, “Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. The concept of the Photofuelcell: A review of a re-emerging research field”, Journal of Hazardous Materials, Vol. 185, pp. 575-590, 2011.
[16] Z. Zhang, M.F. Hossain and T. Takahashi, “Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation”, International Journal of Hydrogen Energy, Vol. 35, pp. 8528-8535, 2010.
[17] N. Terasaki, K. Kakutani, T. Akiyamab and S. Yamada, “A double-driven photoelectrochemical cell”, Synthetic Metals, Vol. 139, pp. 511-514, 2003.
[18] I.E. Paulauskas, J.E. Katz, G.E. Jellison, N.S. Lewis and L.A. Boatner, “Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation”, Thin Solid Films, Vol. 516, pp. 8175-8178, 2008.
[19] M. Antoniadou and P. Lianos, “Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell”, Applied Catalysis B: Environmental, Vol. 99, pp. 307-313, 2010.
[20] K. Tennakone, P.V.V. Jayaweera and P.K.M. Bandaranayake, “Dye-sensitized photoelectrochemical and solid-state solar cells: charge separation, transport and recombination mechanisms”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 158, pp. 125-130, 2003.
[21] S.K. Deya, N.B. Manika, S. Bhattacharyab and A.N. Basu, “A dye/polymer based solid state thin film photoelectrochemical cell used for light detection”, Synthetic Metals, Vol. 118, pp. 19-23, 2001.
[22] O.N. Srivastava, R.K. Karn and M. Misra, “Semiconductor-septum photoelectrochemical solar cell for hydrogen production”, International Journal of Hydrogen Energy, Vol. 25, pp. 495-503, 2000.
[23] N. Getoff, “Photoelectrochemical and photocatalytic methods of hydrogen production: A short review”, International Journal of Hydrogen Energy, Vol. 15(6), pp. 407-417, 1990.
[24] S. Dunn, “Hydrogen futures: toward a sustainable energy system”, International Journal of Hydrogen Energy, Vol. 27, pp. 235-264, 2002.
[25] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1972.
[26] V. Urade, “Photoelectrochemical generation of hydrogen”, Report of chemical engineering, Purdue university, 2006.
[27] S. Chandra, “Photoelectrochemical solar cells”, New York: Gordon and Breach, 1985.
[28] M. Modest, “Radiative heat transfer”, McGraw-Hill, New York, 1993.
[29] Oriel-Instruments. Book of photon tools, 1999.
[30] R.F. Service, “Catalyst boosts hopes for hydrogen bonanza”, Science, Vol. 297, pp. 2189-2190, 2002.
[31] S.U.M. Khan, M. Al-Shahry and W.B. Ingler, “Efficient photochemical water splitting by a chemically modified n-TiO2”, Science, Vol. 297, pp. 2243-2245, 2002.
[32] B. Streetman and S. Banerjee, Solid State Electronic Devices, Prentice Hall, Inc, New Jersey, 2000.
[33] J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager Ⅲ, E.E. Haller, H. Lu and W.J. Schaff, “Effects of the narrow band gap on the properties on InN”, The Journal of Physical Review B, Vol. 66(20), pp. 2014031-2014034, 2002.
[34] http://www.lbl.gov/msd/PIs/Walukiewicz/02/02_8_Full_Solar_Spectrum.html
[35] http://spie.org/x26116.xml?highlight=x2358&ArticleID=x26116
[36] J.R. Bolton, “Solar photoproduction of hydrogen: A review”, Solar Energy, Vol. 57(1), pp. 37-50, 1996.
[37] M.D. Archer and J.R. Bolton, “Requirements for ideal performance of photochemical and photovoltaic solar energy converters”, The Journal of Physical Chemistry, Vol. 94, pp. 8028-8036, 1990.
[38] A. Fujishima, K. Kohayakawa and K. Honda, “Hydrogen production under sunlight with an electrochemical photo-cell”, Journal of The Electrochemical Society, Vol. 122, pp. 1487-1489, 1975.
[39] A.K. Ghosh and H.P. Muruska, “Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes”, The Journal of The Electrochemical Society, Vol. 124, pp. 1516-1512, 1977.
[40] J.F. Houlihan, D.B. Armitage, T. Hoovler, D. Bonaquist, D.P. Madacsi and L.N. Mulay, “Doped polycrystalline TiO2 electrodes for the photo-assisted electrolysis of water”, Materials Research Bulletin, Vol. 13, pp. 1205-1211, 1978.
[41] J.G. Mavroides, D.I. Tchernev, J.A. Kafalas and D.F. Kolesar, “Photoelectrolysis of water in cell with TiO2 anodes”, Materials Research Bulletin, Vol. 10(10), pp. 1023-1030, 1975.
[42] J. Akikusa and S.U.M Khan, “ Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell”, International Journal of Hydrogen Energy, Vol. 22(9), pp. 875-882, 1997.
[43] A.J. Nozik, “Photoelectrolysis of water using semiconducting TiO2 crystals”, Nature, Vol. 257, pp. 383-386, 1975.
[44] J.G. Mavroides, J.A. Kafalas and D.F. Kolesar, “Photoelectrolysis of water in cells with SrTiO3 anodes”, Applied Physics Letters, Vol. 28, pp. 241-243, 1976.
[45] M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson and D.S. Ginley, “Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential”, Journal of the American Chemical Society, Vol. 98(10), pp. 2774-2779, 1976.
[46] O. Khaselev and J.A. Turner, “A monolithic photovoltaic- photoelectrochemical device for hydrogen production via water splitting”, Science, Vol. 280, pp. 425-427, 1998.
[47] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Efficient solar water splitting, Exemplified by RuO2-catalyzed AlGaAs/Si Photoelectrolysis”, The Journal of Physical Chemistry B, Vol. 104, pp. 8920-8924, 2000.
[48] H. Morisaki, T. Watanabe, M. Iwase and K. Yazawa, “Photoelectrolysis of water with TiO2-covered solar-cell electrodes”, Applied Physics Letters, Vol. 29(6), pp. 338-340, 1976.
[49] N. Giordano, V. Antonucci, S. Cavallaro, R. Lembo and J.C.J. Bart, “Photoassisted decomposition of water over modified rutile electrodes”, International Journal of Hydrogen Energy, Vol. 7(11), pp. 867-872, 1982.
[50] T. Watanabe, A. Fujishima and K. Honda, “Photoelectrochemical reactions at SrTiO3 single crystal electrode”, Bulletin of the Chemical Society of Japan, Vol. 49(2), pp. 355-358, 1976.
[51] M. Okuda, K. Yoshida and N. Tanaka, “Photoeffects on semiconductor ceramics electrodes”, Japanese Journal of Applied Physics, Vol. 15(8), pp. 1599, 1976.
[52] D. Laser and A.J. Bard, “Semiconductor electrodes”, Journal of the Electrochemical Society, Vol. 123(12), pp. 1828-1832, 1976.
[53] V. Guruswamy, O.J. Murphy, V. Young, G. Hildreth and O.M. Bockris, “Photoelectrochemical behavior and surface characterization of some lanthanum-based perovskite oxide electrodes”, Solar Energy Materials, Vol. 6(1), pp. 59-83, 1981.
[54] M.Y. El Zayat, A.O. Saed, M.S. El-Dessouki, “Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes”, International Journal of Hydrogen Energy, Vol. 23(4), pp. 259-266, 1998.
[55] P.D. Fleischauer and J.K. Allen, “ Photochemical hydrogen formation by the use of titanium dioxide thin-film electrodes with visible-light excitation”, The Journal of Physical Chemistry, Vol. 82(4), pp. 432-438, 1978.
[56] T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, “Photoelectrochemical properties of the TiO2-Pt system in aqueous solutions”, International Journal of Hydrogen Energy, Vol. 27(1), pp. 19-26, 2002.
[57] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting”, International Journal of Hydrogen Energy, Vol. 26, pp. 653-659, 2001.
[58] S. Licht, “Efficient solar generation of hydrogen fuel-a fundamental analysis”, Electrochemistry Communications, Vol. 4, pp. 790-795, 2002.
[59] S. Licht, L. Halperin, M. Kalina, M. Zidmanab and N. Halperinb, “Electrochemical potential tuned solar water splitting”, Chemical Communications, pp. 3006-3007, 2003.
[60] S. Licht, “Solar water splitting to generate hydrogen fuel: photothermal electrochemical analysis”, The Journal of Physical Chemistry B, Vol. 107, pp. 4253-4260, 2003.
[61] S. Licht, “Solar water splitting to generate hydrogen fuel-a photothermal electrochemical analysis”, International Journal of Hydrogen Energy, Vol. 30, pp. 459-470, 2005.
[62] S. Licht, S. Ghosh, H. Tributsch and S. Fiechter, “ High efficiency solar energy water splitting to generate hydrogen fuel: Probing RuS2 enhancement of multiple band electrolysis”, Solar Energy Materials & Solar Cells, Vol. 70, pp. 471-480, 2002.
[63] S. Dutta, J.H. Morehouse and J.A. Khan, “Numerical analysis of laminar flow and heat transfer in a high temperature electrolyzer”, International Journal of Hydrogen Energy, Vol. 22(9), pp. 211-219, 1997.
[64] M.A. Rosen, “Energy and exergy analysis of electrolytic hydrogen production”, International Journal of Hydrogen Energy, Vol. 20(7), pp. 547-553, 1995.
[65] C.L Tseng, C.J. Tseng and J.C. Chen, “Thermodynamic analysis of a photoelectrochemical hydrogen production system”, International Journal of Hydrogen Energy, Vol. 35, pp. 2781-2785, 2010.
[66] A.J. Nozik, “p-n photoelectrolysis cells”, Applied Physics Letters, Vol. 29(3), pp. 150-153, 1976.
[67] M. Grzegorz, K. Atsuo, M. Sergiy, T. Araib, K. Shinodab and K. Tohjib, “Optimization of a two-compartment photoelectrochemical cell”, International Journal of Hydrogen Energy, Vol. 28, pp. 919-926, 2003.
[68] M. Mridula, R.N. Pandey and O.N. Srivastava, “Solar hydrogen production employing n-TiO2 SC-CEP photoelectorchemical solar cell”, International Journal of Hydrogen Energy, Vol. 22(5), pp. 501-508, 1997.
[69] N.A Kelly and T.L. Gibson, “Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting”, International Journal of Hydrogen Energy, Vol. 31, pp. 1658-1673, 2006.
[70] N.A. Kelly and T.L. Gibson, “Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting”, International Journal of Hydrogen Energy, Vol. 33, pp. 6420-6431, 2008.
[71] C.C. Lo, C.W Huang, C.H Liao and J.C.S. Wu, “Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting”, International Journal of Hydrogen Energy, Vol. 35, pp. 1523-1529, 2010.
[72] K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe and H. Arakawa, “Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system”, Chemical Physics Letters, Vol. 277, pp. 387-391, 1997.
[73] S.W. Bae, S.M. Ji, S.J. Hong, J.W. Jang and J.W. Lee, “Photocatalytic overall water splitting with dual-bed system under visible light irradiation”, International Journal of Hydrogen Energy, Vol. 34, pp. 3243-3249, 2009.
[74] J.K. Goodyear and V.L. Lindberg, “Low absorption float glass for back surface solar reflectors”, Solar Energy Materials, Vol. 3, pp. 57-67, 1980.
[75] P.H. Theunissen and W.A. Beckman, “Solar transmittance characteristics of evacuated tubular collectors with diffuse back reflectors”, Solar Energy, Vol. 35(4), pp. 311-320, 1985.
[76] http://rredc.nrel.gov/solar/spectra/am1.5/
[77] D.J. Segelstein, “The Complex Refractive Index of Water”, Report of University of Missouri-Kansas City, 1981.
[78] J. Boussinesq, “Theories anaytique de la chaleur”, Gauthier-Villars, Paris, 1903.
[79] S.V. Patankar, “Numerical heat transfer and fluid flow”, McGraw-Hill, Washington, 1980.
[80] J.R. Howell, “Thermal radiation heat transfer”, Hemisphere, Washington, 1992.
[81] B.G. Carlson and K.D. Lathrop, “Discrete-ordinates angular quadrature of the neutron transport equation”, Technical Information Series Report, Los Alamos Scientific Laboratory, 1965.
[82] M.L. Williams, A. Yucel and S. Acharya, “Natural convection and radiation in a square enclosure”, Numerical Heat Transfer Part A, Vol. 15, pp. 261-278, 1989.
[83] E.R. Williams, J.E. Faller and H.A. Hill, “New experimental test of Coulomb's Law: A laboratory upper limit on the photon rest mass”, Physical Review Letters, Vol. 26, pp. 721-724, 1971.
[84] http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefor.html#c3
[85] A. Kay, L. Cesar and M. Gratzel, “New benchmark for water photooxidation by nanostructured α-Fe2O3 films”, Journal of the American Chemical Society, Vol. 128, pp. 15714-15721, 2006.
[86] J.L. Cao, Z.C. Wu and J.Q. Zhang, “Photostability study of nanoporous TiO2 film electrodes in different pH solutions”, Journal of Electroanalytical Chemistry, Vol. 595, pp. 71-77, 2006.
[87] J. Nowotny, C.C. Sorrell, T. Bak and L.R. Sheppard, “Solar-hydrogen: Unresolved problems in solid-state science”, Solar Energy, Vol. 78, pp. 593-602, 2005.
[88] E.L. Miller, R.E. Rocheleau and X.M. Deng, “Design considerations for a hybird amorphous silicon/photoelectrochemical multijunction cell for hydrogen production”, International Journal of Hydrogen Energy, Vol. 28, pp. 615-623, 2003.
[89] A. Kudo, “Development of photocatalyst materials for water splitting”, International Journal of Hydrogen Energy, Vol. 31, pp. 197-202, 2006.
[90] A. Kudo, “Recent progress in the development of visible light-driven powdered photocatalysts for water splitting”, International Journal of Hydrogen Energy, Vol. 32, pp. 2673-2678, 2007.
|