博碩士論文 973303003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:120 、訪客IP:3.142.124.119
姓名 吳志陽(Ih-yang Wu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 合成氣低氮氧化物燃燒器實作研究
(An Experimental Study of a Syngas Burner with Low NOx Emission)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文實作改良一合成氣低氮氧化物(NOx)燃燒器,以Bédat & Cheng (1995)所提出之弱漩渦噴流燃燒器(weak swirl jet burner, WSJB)的設計概念為基礎,在燃燒器上游出口設置弱漩渦噴流產生器,它乃由四支20度向上斜角設計之切邊小噴嘴所構成,可在燃燒器出口下游處,形成一均勻擴張流場(diverging flow field),使原本本生燈噴流預混火焰可呈一碗狀預混火焰。氣化合成氣主要成份為一氧化碳和氫,為氣化複循環發電技術(Integrated Gasification Combined Cycles,IGCC)之重要燃料。國際間大多數的合成氣燃燒特性之研究,大多侷限在層流條件下,對於紊流條件下之合成氣燃燒速度研究仍然缺乏。因此,以本實驗室先前所設計之快速混合裝置及貧油紊流燃燒技術,針對挾帶床氣化爐所產出之合成氣(成份為65%CO/35%H2),進行當量比=0.5與0.7貧油合成氣預混燃料之紊流燃燒速度(turbulent burning velocities, ST)量測及其相關排放物之量測,以建立合成氣低氮氧化物燃燒技術。我們探討在固定燃料配比條件下當量比對於火焰特性與燃燒器的穩定操作範圍之影響,並且應用質點影像測速技術(particle image velocimetry, PIV)和氣體分析儀分別量測在不同流量下之紊流燃燒速度和NOx及CO污染物濃度排放量測。實驗結果顯示:當量比=0.7有較寬廣的操作範圍,氫氣濃度增加可擴展混合燃氣之可燃極限並提高ST值;又ST值及紊流強度(turbulent intensity, u’’)會隨著噴流雷諾數(Rej)增加而增加;此一合成氣低氮氧化物燃燒器所量得之[NOx]值均低於10 ppm,在當量比= 0.5的燃燒條件中[NOx]值更低於5 ppm以下。本研究成果將有助於瞭解煤氣化合成氣之燃燒特性與其應用限制,對未來發展氣化複循環發電技術有所助益。
摘要(英) The basic design concept of weak-swirl-jet burner (WSJB) is coming from Bédat & Cheng (1995). To settle a weak jet swirl generator in advance position, produce a stable diverging flow field at the lower reaches and a bowl-shaped premixed turbulent flame. Then, this generator is made by 4 tangential weak air jets at 20 degree_inclination. Syngas, a mixture of mainly carbon monoxide (CO) and hydrogen (H2), is an important fuel in Integrated Gasification Combined Cycles. The most of previous studies in the feature of syngas combustion are limited in the laminar flame regime, and it’s scanty of studies to focus on turbulence combustion of syngas. However, utilizing the fast mixing apparatus and the lean turbulent combustion technique developed in our laboratory, we investigated the turbulent burning velocities (ST) and the exhaust emissions of the premixed lean syngas flames in the WSJB at two equivalence ratios of equivalence rate = 0.5 and equivalence rate = 0.7. The syngas used is the product from fluidized bed, with 65% CO and 35% H2. We identified the stable operation regime of the burner. Using particle image velocimetry and a gas analyzer, we measured the turbulent burning velocities and the emissions of NOx and CO under different equivalence ratios, mixture flow rates (characterized by the jet Reynolds number Rej ), and swirl strength (characterized by the swirl number S). The main results from our experiments include: (1) On the (Rej , S) plane, the stable operation region for equivalence rate equivalence rate = 0.7 is broader than that for equivalence rate = 0.5; (2) Increasing the concentration of H2 extends the flammable limits of the syngas and increases the ST ; (3) Both ST and turbulent intensity increase with the increase of Rej ; (4) Turbulent burning velocities normalized by the laminar burning velocity, ST/SL, of the bowl-shaped flames in the WSJB are higher than the turbulent spherical flames under the same conditions; and (5) Over the range of Rej and S explored, the NOx emission is always below 10 ppm, with the minimum below 5 ppm for equivalence rate = 0.5. Our experiment demonstrated that the WSJB is superb burner in terms of reducing NOx emission. Moreover, our study improves to understanding the turbulent flame of syngas feature and practical apply limitation. That benefits the development of Integrated Gasification Combined Cycles (IGCC).
關鍵字(中) ★ 低氮氧化物燃燒器
★ 氣化複循環發電技術
★ 弱漩渦燃燒器
★ 層流和紊流燃燒速度
★ 合成氣
關鍵字(英) ★ Integrated Gasification Combined Cycles
★ Syngas
★ Weak swirl jet burner
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 IX
符號說明 X
第一章、 前言…………………………………………………………1
1.1 研究動機……………………………………………………1
1.2 問題所………………………………………………………3
1.3 解決方法……………………………………………………4
1.4 論文架構……………………………………………………4
第二章、 文獻回顧……………………………………………………5
2.1 預混燃燒器設計……………………………………………5
2.2 預混紊流燃燒簡介…………………………………………5
2.3 漩渦火焰之原理……………………………………………7
2.3.1 漩渦流場特性………………………………………………7
2.3.2 漩渦流產生方法……………………………………………8
2.3.3 漩渦火焰及燃燒器…………………………………………9
2.4 合成氣低氮氧化合物燃燒器………………………………11
2.5 污染物生成…………………………………………………12
2.6 預混紊流燃燒速度之量測…………………………………12
2.6.1 不同分析位置對決定紊流燃燒速度ST的影響……………12
2.6.2紊流燃燒速度量測誤差評估……………………………………13
第三章、 實驗設備與方法……………………………………………19
3.1 弱漩渦噴流燃燒器…………………………………………19
3.2 燃氣供應與控制系統………………………………………20
3.3 高速質點影像測速技術(Particle image velocimetry) ………………………………………………………………21
3.4 紊流燃燒速度的量測及分析………………………………22
3.5 廢氣分析及濃度校正………………………………………24
3.6 實驗流程……………………………………………………25
第四章、 結果與討論…………………………………………………33
4.1 合成氣燃燒器性能測試……………………………………33
4.2 漩渦流場量測分析…………………………………………34
4.3 PIV計算視窗 (window sizes)之誤差分析………………35
4.4 WSJB流場特性………………………………………………35
4.5 燃燒器廢氣量測……………………………………………35
4.6 紊流燃燒速度量測結果……………………………………37
第五章、 結論與未來工作……………………………………………45
5.1 合成氣弱漩渦噴流燃燒器測試……………………………45
5.2 未來工作……………………………………………………46
參考文獻 ………………………………………………………………47
參考文獻 [1] 科學人2011年4月,“全球暖化後的降雨危機”。
[2] 永續產業發展季刊2011 54 March,“產業碳揭露/產品碳足跡專輯”。
[3] 維基百科http://zh.wikipedia.org/wiki。
[4] 物理雙月刊(卅卷四期) 2008 年八月。
[5] http://biz.sinchew-i.com/node/35234?tid=3。
[6] Drell, I. L. and Belles, F. E., “Survey of hydrogen combustion properties”, NACA Research Memorandum Report 1383, 1957.
[7] 黃逸芳,“氫燃燒器與低氮氧化物燃燒器實作研究”,國立中央大學機械工程研究所,碩士論文,2006年。
[8] 游智傑,“低氮氧化物燃燒器與加氫效應定量量測”,國立中央大學機械工程研究所,碩士論文,2007年。
[9] 邱垂隆,“低氮氧化物氫燃燒器:紊流燃燒速度與化學螢光量測”,國立中央大學機械工程研究所,碩士論文,2010年。
[10] Bédat, B. and Cheng, R. K., “Experimental study of premixed flames in intense isotropic turbulence”, Combust. Flame 100, 486-494, 1995.
[11] Cheng, R. K., Fable, S. A., Schmidt, D., Arellano, L. and Smith, K. O., “Development of a low swirl injector concept for gas turbines”, Proc. of International Joint Power Conference, New Orleans, Louisiana, USA, June 4-7, 2001.
[12].Yetter, R. A., Glassman, I. and Gabler, H. C., “Asymmetric whirl combustion: a new low NOx approach”, Proc. Combust. Inst. 28, 1265-1272, 2000.
[13] Bradley, D., “How Fast Can We Burn? ”, Proc. Combust. Inst. 24, 247-262, 1992.
[14].Aldredge, R. C., Vaezi, V. and Ronney, P. D., “Premixed-flame propagation in turbulent Taylor-Couette flow”, Combust. Flame 115, 395-405, 1998.
[15] Shy, S. S., Lee, E. I., Chang, N. W. and Yang, S. I., “Direct and indirect measurements of flame surface density, orientation, and curvature for premixed turbulent combustion modeling in a cruciform burner”, Proc. Combust. Inst. 28, 383-390, 2000a.
[16] Shy, S. S., Lin, W. J. and Peng, K. Z., “High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner”, Proc. Combust. Inst. 28, 561-568, 2000b.
[17] Shy, S. S., Lin, W. J. and Wei, J. C., “An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion”, Proc. R. Soc. (London) A 456, 1997-2019, 2000c.
[18] Plessing, T., Kortshik, C., Peters, N., Mansour, M. S. and Cheng, R. K., “Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner”, Proc. Combust. Inst. 28, 359-366, 2000.
[19].Chigier, N. A. and Chervinsky, A., “Experimental investigation of swirling vortex motion in jets”, J. Appl. Mech. 34, 443-451, 1967.
[20] Claypole, T. C. and Syred, N., “The effect of swirl burner aerodynamics on NOx formation”, Proc. Combust. Inst. 18, 81-89, 1980.
[21] Syred, N. and Beer, J. M., “Combustion in swirling flows: a review”, Combust. Flame 23, 143-201, 1974.
[22] Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O. and Cheng, R. K., “A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines”, Proc. Combust. Inst. 30, 2867-2874, 2005.
[23] Gupta, A. K., Lilley, D. G. and Syred, N., “Swirl Flows”, Abacus Press, Tunbridge Wells, England, 1984.
[24] Chen, R. H. and Driscoll, J. F., “The role of the recirculation vortex in improving fuel-air mixing within swirling flames”, Proc. Combust. Inst. 22, 531-540, 1988.
[25].李國源,“停滯流燃氣噴注漩渦燃燒器之流場與火焰研究”,國立成功大學航太與太空工程研究所,碩士論文,2002年。
[26] Chen, C. K., Lau, K. S., Chin, W. K. and Cheng, R. K., “Freely propagation open premixed turbulent flames stabilized by swirl”, Proc. Combust. Inst. 24, 511-518, 1992.
[27].Cheng, R. K., “Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl”, Combust. Flame 101, 1-14, 1995.
[28] Yegian, D. T. and Cheng, R. K., “Development of lean premixed low-swirl burner for low NOx practical application”, Combust. Sci. Tech. 139, 207-227, 1998.
[29] Cheng, R. K., Yegian, D. T., Miyasato, M. M., Samuelsen, G. S., Benson, C. E., Pellizzari, R. and Loftus, P., “Scaling and development of low-swirl burners for low emission furnaces and boilers”, Proc. Combust. Inst. 28, 1305-1313, 2000.
[30] Cho, P., Law, C. K., Hertzbeqrg, J. H. and Cheng, R. K., “Structure and propagation of turbulent premixed flames stabilized in a stagnation flow”, Proc. Combust. Inst. 21, 1493-1499, 1986.
[31] Bowman, C. T., “Control of combustion-generated nitrogen oxide emission: technology driven by regulation”, Proc. Combust. Inst. 24, 859-878, 1992.
[32].尹偉光,“預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及其未來發展”,國立中央大學機械工程研究所,碩士論文,1996年。
[33].林孟良,“氣態預混紊流燃燒速度量測於一近似均勻等向性紊流場”,國立中央大學機械工程研究所,碩士論文,1998年。
[34].魏建樟,“應用雷射斷層攝影術探討預混紊焰傳播”,國立中央大學機械工程研究所,碩士論文,1999年。
[35].林文基,“甲烷與丙烷預混紊流燃燒速度的量測”,國立中央大學機械工程研究所,碩士論文,1999年。
指導教授 施聖洋(Shenq-yang Shy) 審核日期 2011-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明