參考文獻 |
[1] T.G. Leighton, The Acoustic Bubble, Institute of Sound and Vibration Research, Southampton, pp.3-10, pp.16-23, pp.30-31, 1994.
[2] American Society for Nondestructive Testing, Nondestructive Testing Handbook, volume 7, second edition, pp.39, pp.170-173, pp.731-744, 1991.
[3] 陳永增,鄧惠源,非破壞檢測,全華圖書有限公司,台北,4-22-4-39頁, 民國88 年。
[4] E. P. Papadakis, “Revised Grain-Scattering Formulas and Tables”, The journal of the acoustical society of America, volume 37, number 4, pp.703-710, April 1965.
[5] X.G. Zhang, et al., “Ultrasonic attenuation due to grain boundary scattering in copper and copper-aluminum”, J. Acoust. Soc. Am., volume 116, number 1, pp.109-116, March 2004.
[6] R. Unal, “The mean grain size determination of boron carbide(B4C)-aluminum(Al) and boron carbide(B4C)-nickel(Ni) composites by ultrasonic velocity technique”, Materials Characterization, volume 56, pp.241-244, 2006.
[7] R. Ambardar, “Effect of porosity, pore diameter and grain size on ultrasonic attenuation in aluminum alloy castings”, Insight: Non-Destructive Testing and Condition Monitoring, volume 37, number 7, pp.536-543, July 1995.
[8] R. Ambardar, “Ultrasonic velocity measurement to assess casting quality”, Insight: Non-Destructive Testing and Condition Monitoring, volume 38, number 7, pp.502-508, July 1996.
[9] C.H. , “Investigation of microstructure-ultrasonic velocity relationship in SiCp-reinforced aluminum metal matrix composites”, Materials Science and Engineering A, pp.29-35, 2003.
[10] J. Stella, et al., “Characterization of the sensitization degree in the AISI 304 stainless steel using spectral analysis and conventional ultrasonic techniques”, NDT&E International, volume 42, pp.267-274, 2009.
[11] A. Granato, et al., “Theory of Mechanical Damping Due to Dislocations”, Journal of applied physics, volume 27, number 6, pp.583-593, June 1956.
[12] Akira Hikata, et al., “Sensitivity of Ultrasonic Attenuation and Velocity Changes to Plastic Deformation”, Journal of applied physics, volume 27, number 4, pp.396-404, April 1956.
[13] G.T. Fei, et al., “The relation between the variation of stress, energy loss, ultrasonic attenuation, and dislocation configuration in aluminum during the early stages of fatigue”, Phys. Stat. Sol. (a), volume 140, pp.119-125, 1993.
[14] G.T. Fei, et al., “Ultrasonic attenuation study on the interaction between dislocations and point defects in 99.999 wt% Al and Al-0.025 wt% Mg”, Phys. Stat. Sol. (a), volume 153, pp.323-328, 1996.
[15] J. Wang, et al., “Sensitivity of ultrasonic attenuation and velocity change to cyclic deformation in pure aluminum”, Phys. Stat. Sol. (a), volume 169, pp.43-48, 1998.
[16] J.P. Hirth, et al., Theory of dislocations, second edition, Wiley, New York, pp.59-61, pp.73-76, pp.731-734, 1982.
[17] ASM International, ASM Specialty Handbook: Aluminum and Aluminum Alloys, J.R. Davis, ASM International, pp.639-644, pp.686-687, 1993.
[18] ASM International, Aluminum: Properties and Physical Metallurgy, J.E. Hatch, ASM International, pp.1-19, pp.109, 1984.
[19] E.O. Hall, ”The deformation and ageing of mild steel”, Proc. Phys. Soc. B, volume 64, pp.747-753, 1951.
[20] N.J. Petch, “The Cleavage Strength of Polycrystals”, Journal of Iron and Steel Institute, volume 174, p 25-28, 1953.
[21] N. Hansen, “The effect of grain size and strain on the tensile flow stress of aluminum at room temperature”, Acta metallurgica, volume 25, pp.863-869, 1977.
[22] 日本輕金屬學會委員, 鋁合金之組織與性質, 日本輕金屬學會, pp.278, 1991.
[23] W.H. Cubberly, Heat treating, 9th ed., Metals Handbook, vol.22, American Society for Metals, Metals Park, OH, pp. 674– 676,1981.
[24] K. Masuda, et al., “Microstructures of aged Al–Mg–Si alloys” , Journal of Japan Institute of Light Metals, volume 53, pp.457-462, 2003.
[25] M. Murayama, et al., “The Effect of Cu Additions on the Precipitation Kinetics in an Al-Mg-Si Alloy with Excess Si”, Metallurgical and materials transactions A, volume 32A, pp.239-246, 2001.
[26] M. Murayama, et al., “Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys”, Acta materialia, volume 47, pp.1537-1548, 1999.
[27] M. Murayama, et al., “Atom probe studies on the early stages of precipitation in Al–Mg–Si alloys”, Materials Science and Engineering A, volume 250, pp.127-132, 1998.
[28] A. Cuniberti, et al., “Influence of natural aging on the precipitation hardening of an -AlMgSi alloy”, Materials Science and Engineering A, volume 527, pp.5307-5311, 2010.
[29] T. Inoue, et al., “Effect of initial grain sizes on hardness variation and strain distribution of pure aluminum severely deformed by compression tests”, Acta Materialia, volume 56, pp. 6291–6303, 2008.
[30] ASTM International, “E112 – 10 Standard test methods for determining average grain size”, pp.10, 2010.
|