參考文獻 |
[1] F. X. Liu, P. K. Liaw, W. H. Jiang, C. L. Chiang, Y. F. Gao, Y. F. Guan, J. P. Chu, P. D. Rack, “Fatigue-resistance enhancements by glass-forming metallic films”, Mater. Sci. Eng., A 468-470, p. 250, 2007.
[2] U. Essmann, U. Gösele and H. Mughrabi, “A model of extrusions and intrusions in fatigued metals I”, Philosophical Magazine, Vol. 44, p. 405, 1981.
[3] H. Kaneshiro, K. Katagiri, C. Makabe, T. Yafuso and H. Kobayashi, “Dislocation structures in the strain localized region in fatigued 70/30 brass and the interaction with grain boundary”, Metall. Trans., Vol. 21A, p. 667, 1990.
[4] W. Liu, M. Bayerlein, H. Mughrabi, A. Day and P. N. Quested, “Crystallographic features of intergranular crack initiation in fatigued copper polycrystals”, Acta Metall., Vol. 40, p. 1763, 1992.
[5] R. D. Conner, Y. Li, W. D. Nix, and W. L. Johnson, “Shear band spacing under bending of Zr-based metallic glass plates”, Acta Mater., Vol. 52, p. 2429, 2004.
[6] R. D. Conner, W. L. Johnson, “Shear bands and cracking of metallic glass plates in bending”, J. Appl. Phys., Vol. 94, p. 904, 2003.
[7] W. H. Jiang, G. J. Fan, H. Choo, P. K. Liaw,“Ductility of a Zr-based bulk-metallic glass with different specimen's geometries” , Mater. Lett., p. 3537, 2006.
[8] F. X. Liu, P. K. Liaw, G. Y. Wang, C. L. Chiang, D. A. Smith, P. D. Rack, J. P. Chu, R. A. Buchanan, “Specimen-geometry effects on mechanical behavior of metallic glasses”, Intermetallics, Vol. 14, p. 1014, 2006.
[9] F. X. Liu, C. L. Chiang, J. P. Chu, Y. F. Gao, and P. K. Liaw, “Effects of Glass-Forming Metallic Film on the Fatigue Behavior of C-2000 Ni-Based Alloy”, Mater. Res. Soc. Symp. Proc., Vol. 903E, p. 13.3, 2006.
[10] B. Lonyuk, I. Apachitei, J. Duszczyk, “The effect of oxide coatings on fatigue properties of 7475-T6 aluminium alloy”, Surface & Coating Technology, Vol. 201, pp. 8688-8694, 2007.
[11] W. Klement, R. H. Wilens and P. Duwes,“Thermophysical properties of bulk metallic glass-forming liquids”, Nature, Vol. 187, p. 869, 1960.
[12] A. Brenner, D. E. Couch and E. K. Williams,“Electrodeposition of alloys of phosphorus with nickel or cobalt”, J. Res. nat1. Bur. Stand, Vol. 44, p. 109, 1950.
[13] 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠等著,材料電子顯微鏡學, p. 268,國科會精儀中心,1990 年。
[14] 戴道生、韓汝琪等編著,非晶態物理,高等學校教學用書,電子業出版社,1984 年。
[15] J. Kramer, “Produced the first amorphous metals through vapor deposition”, Annln Phys., Vol. 19, p. 37, 1934.
[16] A. Brenner, D. E. Couch and E. K. Williams, “Electrodeposition of alloys”, J. Res, natn. Bur. Stand, Vol.44, p.109, 1950.
[17] W. Klement, R. H. Wilens and P. Duwes,“Thermophysical properties of bulk metallic glass-forming liquids”, Nature, Vol. 187, p. 869, 1960.
[18] D. Turnbull, “Phase changes”, Solid State Phys., Vol. 3, p. 225, 1956.
[19] D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy systems”, J. Phys., Vol. 35, pp. 1-10, 1974.
[20] D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, J. Phy. Chem. Glasses, Vol. 7, p. 159, 1966.
[21] H. A. Davies, “The formation of metallic glass”, J. Phys. Chem. Glasses, Vol. 17, p. 159, 1976.
[22] H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, p. 1237, 1970.
[23] H. S. Chen, “Glassy metals”, Rep. Prog. Phys., Vol. 43, pp. 353-356, 1980.
[24] Liebermann H. and Graham C., “Production Of Amorphous Alloy Ribbons And Effects Of Apparatus Parameters On Ribbon Dimensions”, IEEE Transactions on Magnetics, Vol. 12, No. 6, pp. 921 – 923, 1976.
[25] 吳學陞著作,“新興材料-塊狀非晶質金屬材料”,工業材料,149 期,p.154-159,1999 年。
[26] A. L. Drehman, A. L. Greer and D. Turnbull, “Bulk formation of a metallic glass: Pd40Ni40P20”, Appl. Phys. Letter, Vol. 41, p. 716, 1982.
[27] C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. Scarbrough, “Preparation of amorphous Ni60Nb40 by mechanical alloying”, Appl. Phys. Lett., Vol. 43, pp. 1017-1019, 1983.
[28] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rate (Overview)”, Mater. Trans. JIM, Vol. 36, p. 866, 1995.
[29] A. Inoue, K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, p. 7, 1995.
[30] A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng., Vol. 226-228, p. 357, 1997.
[31] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method”, Mater. Trans. JIM, Vol. 32, pp. 609-616, 1991.
[32] X. M. Wang, I. Yoshii, A. Inoue, Y. H. Kim and I. B. Kim, “Bulk Amorphous Ni75-xNb5MxP20-yBy (M=Cr, Mo) Alloys with Large Supercooling and High Strength”, Mater. Trans. JIM, Vol. 40, pp. 1130-1136, 1999.
[33] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Mater. Trans. JIM, Vol. 32, p. 609, 1991.
[34] A. Peker, W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Appl. Phys. Lett., Vol. 63, p. 2342, 1993.
[35] A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Mater. Trans. JIM, Vol. 33, p. 937, 1992.
[36] W. H. Wang, C. Dong and C. H. Shek, “Bulk metallic glasses”, Materials Science and Engineering R., Vol. 44, pp. 45-89, 2004.
[37] S. J. Poon, G. J. Shiflet, V. Ponnambalam, V. M. Keppens, R. Taylor and G. Petculescu, “Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys”, Appl. Phys. Letter, Vol. 83, p. 1131, 2003.
[38] W. L. Johnson, “Bulk glass-forming metallic alloys: science and technology”, MRS Bull., Vol. 24, pp. 42-56, 1999.
[39] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method”, Mater. Trans. JIM, Vol. 32, No. 7, p. 609, 1991.
[40] Robert E., Reed-hill and Reza Abbaschian, Physical Metallurgy Principles, 3rd Ed., PWS Publishing Company, Boston, 1994.
[41] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater., Vol. 48, pp. 279-306, 2000.
[42] G. N. Jackson, “R.F. sputtering”, Thin Solid Films, Vol. 5, p. 209, 1970.
[43] K. L. Chapre, “Thin Film Phenomena”, McGraw-Hill, 1969.
[44] H. S. Chen and D. Turnbull, “Thermal evidence of a glass transition in gold-silicon-germanium alloy”, J. Appl. Phys. Letter, Vol. 10, p. 284, 1967.
[45] M. H. Cohen, et al., “Metastability of Amorphous Structure” , Nature, Vol. 203, p. 964, 1964.
[46] W. Kauzmann, “ The nature of the glassy state and the behavior of liquids at low temperatures”, Chem. Rev., Vol. 43, pp. 219-256, 1948.
[47] D. Turnbull, “Thermodynamics and kinetics of formation of the glass state and initial devitrification”, Physics of Non-Crystalline Solides, By J. A. prins, North-Holland, pp.41-56, 1964.
[48] R. J. Greet and D. Turnbull, “ Test of Adam-Gibbs Liquid Viscosity Model with O-Terphenyl Specific-Heat Data”, J. Chem. Phys., Vol. 47, pp. 2185-2189, 1967.
[49] J. H. Gibbs and E. A. DiMarzio, “ Nature of the Glass Transition and Glass State”, J. Chem. Phys., Vol. 28, pp. 373-375, 1958.
[50] T. H. Hung, J. C. Huang, J. S. C. Jang and S. C. Lu, “Improved Thermal Stability of Amorphous Zr-Al-Cu-Ni Alloys with Si and B”, Mater. Tran. JIM, Vol. 48, pp. 239-243, 2007.
[51] A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications Institute of for Material Research”,Tohoku University Katahira 2-1-1, Sendai No.980, Japan, 1999.
[52] M. Heilmaier, “Deformation behavior of Zr-based metallic glasses”, Materials Processing Technology, Vol. 117, pp. 374-380, 2001.
[53] A. Inoue and C. Fan, “High-strength bulk nanostructure alloys consisting of compound and amorphous phases”, Mat. Res. Soc. Symp. Proc., Vol. 554, pp. 143-148, 1999.
[54]. Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses ”, Acta Metall., Vol. 50 , p. 3501, 2002.
[55] S. R. Elliot, “Physics of Amorphous Materials”, p. 30, 1990.
[56] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metall., Vol. 27, 1979.
[57] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, Vol. 25, p. 407, 1977.
[58] J. P. Chu, J. C. Huang, J. S. C. Jang, Y. C. Wang, and P. K. Liiaw, “Thin film metallic glasses: preparations, properties, and applications”, JOM, Vol. 62, No. 4, p. 19, 2010.
[59] Y. Liu et al., “Proceedings of the 14th IEEE International Conference on Micro Electro and Mechanical Systems”, Piscataway, NJ:IEEE, pp. 102-105, 2001.
[60] P. Sharma, W. Zhang, K. Amiya, H. Kimura, A. Inoue, “Nanoscale Patterning of Zr-Al-Cu-Ni Metallic Glass Thin Films Deposited by Magnetron Sputtering”, J. Nanosci. Nanotech., Vol. 5, pp. 416-420, 2005.
[61] S. J. Bull, “Tribology of carbon coatings: DLC, diamond and beyond”, Diamond and Related Materials, Vol. 4, Issue: 5-6, pp. 827-836, 1995.
[62] A. Erdemir, “The role of hydrogen in tribological properties of diamond-like, carbon films”, Surface and Coatings Technology, Vol. 146-147, pp. 292-297, 2001.
[63] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res., Vol. 7, p. 1564, 1992.
[64] S. R. Elliot, “Physics of Amorphous Material”, 2nd Ed., USA, 1990.
[65] C. T. Liu, L. Heatherly, J. A. Horton, “Test environments and mechanical properties of Zr-base bulk amorphous alloys”, Metallurgical and Materials Transactions, Vol. 29, pp. 1811-1820, 2007.
[66] A Inoue, Akira Takeuchi and Tao Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, Vol. 29, pp. 1779-1793, 2007.
[67] J. L. Vossen and J. J. Cuomo, ”Thin Film Process”, Sec. II-1, Academic Press, p.155, 1978.
[68] A. S. Penfold, “Handbook of Thin Film Process Technology”, Sec. A3.1, Institute of Physics Publishing, 1995.
[69] J. E. Sundgren, B. O. Johansson, and S. E. Karlsson, “Character ization of TiN Films Growth by d.c reactive sputtering”, Surf. Sci., Vol. 128, p. 265, 1983.
[70] 賴耿陽,“IC 製程之濺射技術”,復漢出版社,1997 年。
[71] J. A. Berrios, J. G. La Barbera-Sosa, D. G. Teer and E. S. Puchi-Cabrera, “Fatigue properties of a 316L stainless steel coated with different ZrN deposits”, Surf. Coat. Technol., Vol. 179, pp. 145-157, 2004.
[72] E. S. Puchi-Cabrera, F. Martinez, I. Herrera, J. A. Berrios, S. Dixit and D. Bhat, “On the fatigue behavior of an AISI 316L stainless steel coated with a PVD TiN deposit”, Surf. Coat. Technol., Vol. 182 , pp. 276-286, 2004.
[73] J. P. Chu, C. M. Lee, R. T. Huang and P. K. Liaw, “Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects”, Surf. Coat. Technol., Vol. 205, pp. 4030-4034, 2010.
[74] ASTM C1161-02c, “Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature”, 2008.
[75] J. S. C. Jang, I. H. Wang, L. J. Chang, T. H. Hung and J. C. Huang, “Crystallization kinetics and thermal stability of the Zr60Al7.5Cu17.5Ni10Si4B1 amorphous alloy studied by isothermal differential scanning calorimetry and transmission electron microscopy”, Mater. Sci. and Eng., Vol. 449-451, pp. 511-516, 2007.
[76]. J. S. C. Jang, L. J. Chang, T. H. Hung, J. C. Huang and C. T. Liu, “Thermal stability and crystallization of Zr-Al-Cu-Ni based amorphous alloy added with boron and silicon”, Intermetallics., Vol. 14, pp. 951-956, 2006.
[77] H. S. Shin and Y. J. Jeong, “Strain rate dependence of deformation behavior in Zr-based bulk metallic glasses in the supercooled liquid region”, Journal of Alloys and Compounds, Vol. 434-435, pp. 40-43, 2007.
[78] C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, and R. A. Buchanan, “A 200 nm thick glass-forming metallic film for fatigue-property enhancements”, Appl. Phys. Lett., Vol. 88, p.131902, 2006.
[79] 賴耿陽,“薄膜製作工藝學”,復漢出版社,1999 年。
|