以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:33 、訪客IP:3.142.40.195
姓名 林雨澤(Yu-Ze Lin) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
(Research About Sharpness of Scalpel Knife of Metallic Glass and Metallic Glass Thin Film Coating)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 據文獻指出非晶質合金具有優良的機械性質、抗蝕性與抗菌性,可應用於醫療器械開發,故本研究選用鋯基與鋯銅基非晶質合金以塊狀與薄膜型式製備非晶質合金手術刀與非晶質合金鍍膜手術刀,藉切削橡皮,計算刀刃與橡皮間各工作階段作用力,以比較商用、非晶質塊材與鍍膜手術刀之銳利度。
鋯基與鋯銅基非晶質合金藉由下吸式銅模鑄造出2mm與3mm厚度之板材,2mm板材將加工製作成濺鍍靶材以直流濺鍍非晶質薄膜至商用手術刀上,3mm板材則將用於製作成非晶質合金手術刀之原材料,再進行切削實驗並計算刀具銳度指標(Blade Sharpness Index, BSI),以比較各種手術刀具銳度之差異,刀具銳度指標之數值越低其銳度越高。
非晶質合金手術刀經研磨拋光後,先由XRD確認其仍為非晶質合金後,進行銳度實驗,由實驗的結果可知,商業用手術刀之刀具銳度指標為0.335,鋯基非晶質合金手術刀刀具銳度指標為0.26,鋯銅基非晶質合金手術刀為0.252,銳度提升比率方面,鋯基為22.4%,鋯銅基則為24.8%,可知鋯銅基非晶質合金手術刀其刀具銳度指標略優於鋯基,且兩者皆較商用手術刀為佳。
在非晶質合金鍍膜手術刀方面,鋯基與鋯銅基非晶質合金鍍膜手術刀其刀具銳度指標分別為0.249和0.231,銳度提升比率為25.7%與31%,可知非晶質金屬鍍膜手術刀,其銳度皆較未鍍膜之商用手術刀佳,其中鋯銅基鍍膜在銳度提升方面之表現最為優異。
經由實驗可知,不論是非晶質合金手術刀或是非晶質金屬鍍膜手術刀,其銳度皆較商用手術刀為佳。再加上非晶質合金所具有之優異機械性質,抗蝕性與抗菌性,相信是未來手術刀具相當好的選擇。
摘要(英) Amorphous alloys have excellent properties about mechanical properties, corrosion resistance, and antimicrobial ability. This research choose different types scalpel blades – commercial scalpels, scalpels made of amorphous alloy, and scalpels coat with amorphous alloy thin film, and use these scalpel to cut the rubber plate. The composition of the amorphous alloy is about Zr-Cu-Ni-Al-Ni and Zr-Cu-Ag-Al-Si, After the cutting experiment, we calculate the data to compare the blade sharpness of the different scalpels.
At first, the scalpels of metallic glass (MG) were checked by XRD to ensure its amorphous state, and then do the cutting experiment. The results of cutting test revealed that the Blade Sharpness Index (BSI) of 0.260 for the scalpels made of Zr based MG and 0.252 for the scalpels made of Zr-Cu based MG, and 0.335 for the commercial scalpels, respectively. In summary, the sharpness can be improved about 22.4% to 24.8% for the Zr-based and ZrCu-based MG scalpel.
Moreover, the results of cutting test also show that the BSI of 0.249 for the scalpel which coating the Zr based MG thin film by DC pulse magnetron sputtering process, and 0.231 for the Zr-Cu based, and sharpness can be improved about 25.7% and 31%. The scalpels with coating MG thin film are sharper than the commercial scalpels.
The scalpels made of MG and the scalpel blade coats with MG thin film, these scalpels both sharper than the commercial scalpel blades. Due to the excellent properties of the MG, we believe that the MG will be the good choice to make the scalpel blades in the future.
關鍵字(中) ★ 非晶質合金
★ 金屬玻璃
★ 手術刀
★ 銳利度關鍵字(英) ★ Sharpness
★ Surgical knife
★ Scalpel
★ Metallic glass
★ Amorphous alloy論文目次 總目錄
摘 要 ..........................................................................................................................i
Abstract ........................................................................................................................iii
總目錄 ........................................................................................................................iv
圖目錄 ........................................................................................................................viii
表目錄 ........................................................................................................................xi
第一章 緒論 .................................................................................................................1
1-1 前言 ........................................................................................................................1
1-2 研究動機 ................................................................................................................2
第二章 理論基礎 ........................................................................................................6
2-1 非晶質合金之發展歷程......................................................................................6
2-2 實驗歸納法則 ......................................................................................................8
2-3 非晶質合金之種類 ..............................................................................................9
2-4 非晶質合金之製造方法 .....................................................................................10
2-4-1 金屬模鑄造法 ...................................................................................................10
2-4-2 水淬法 ...............................................................................................................10
2-4-3 噴鑄-吸鑄法 ......................................................................................................11
2-4-4 電弧熔煉吸鑄法 ...............................................................................................11
2-4-5 非晶粉末擠壓法 ...............................................................................................11
2-4-6 高壓鑄造法 .......................................................................................................12
2-5 非晶質合金之特性 .............................................................................................12
2-5-1 機械性質 ...........................................................................................................13
2-5-2 磁性質 ...............................................................................................................13
2-5-3 化學性質–耐蝕性 ...........................................................................................14
2-5-4 化學性質–抗菌性 ...........................................................................................15
2-6 濺鍍理論 .............................................................................................................15
2.6.1 直流濺鍍理論 ...................................................................................................16
2-7 薄膜沈積原理 .....................................................................................................19
2-8 刮痕測試原理 .....................................................................................................21
2-9 刀鋒銳利指數(Blade Sharp Index, BSI) ...............................................................22
2-9-1 計算δi ...............................................................................................................22
2-9-2 計算Ei ...............................................................................................................23
2-9-3 計算Jic ..............................................................................................................23
第三章 實驗步驟與方法 ..........................................................................................35
3-1 實驗目的 ............................................................................................................35
3-2 實驗材料製備 ....................................................................................................35
3-2-1 合金配置 ..........................................................................................................35
3-2-2 合金試片製作 .................................................................................................36
3-2-3真空吸鑄製程 .................................................................................................36
3-2-4 靶材製作及非晶質薄膜濺鍍 .........................................................................37
3-2-5 手術刀製作 .....................................................................................................37
3-3 機械性質分析 ...................................................................................................38
3-3-1 銳度測試分析 .................................................................................................38
3-3-2 薄膜附著力分析 .............................................................................................39
3-3-3 薄膜硬度分析 .................................................................................................39
3-3-4 非晶質合金硬度分析 .....................................................................................40
3-4 微觀結構分析 ...................................................................................................40
3-4-1 X光繞射儀分析(XRD) ..............................................................................40
3-4-2 掃描式電子顯微鏡觀察(SEM) ..................................................................41
3-4-3 能量分散質譜儀成份分析(EDS) ...............................................................41
第四章 結果與討論 ..................................................................................................58
4-1 微結構分析 ........................................................................................................59
4-1-1結晶構造分析 ..................................................................................................59
4-1-2 刀鋒表面分析 ..................................................................................................60
4-2 表面粗糙度分析 ................................................................................................61
4-3 成份分析 ............................................................................................................61
4-3-1 能量分散質譜儀(EDS) ...............................................................................62
4-4 機械性質分析 ....................................................................................................63
4-4-1 硬度分析 ..........................................................................................................63
4-4-2 薄膜硬度分析 ..................................................................................................63
4-4-3 薄膜附著力分析 .............................................................................................64
4-4-4 切削能力分析 ..................................................................................................64
第五章 結論 ..............................................................................................................86
第六章 參考文獻 ......................................................................................................88
參考文獻 [1].吳學陞,工業材料,vol.149,p.154,1999年。
[2].W. L. Johnson, “Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys”, Materials Science Forum, vol.225-227, 1996, p.35-50.
[3].A. Inoue, H. Koshiba, T. Zhang and A. Makino, “Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0–10Nb (or Ta)0–10B20 amorphous alloys”, Appl. Phys. Lett., vol.83, 1998, p.1967-1974.
[4].A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline Materials, 2001.
[5].M. Naka, K. Hashimoto and T. Masumoto, “Change in corrosion behavior of amorphous Fe-P-C alloys by alloying with various metallic elements”, Journal of Non-Crystalline Solids, vol.31, p.355-365, 1979.
[6].T. C. Chieh, J. Chu, C. T. Liu and J. K. Wu, “Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions”, Materials Letters, vol.57, p.3022-3025, 2003.
[7].B. M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, “The effect of phosphorus addition on the corrosion behavior of amorphous Fe-8Cr-P alloys in 9M H2SO4”, Corrosion Science, vol.37, p.709-722, 1995.
[8].H. Habazaki, H. Ukai, K. Izumiya and K. Hashimoto, “Corrosion behaviour of amorphous Ni-Cr-Nb-P-B bulk alloys in 6M HCl solution” Materials Science and Engineering, vol.318, p.77-86, 2001.
[9].C. A. C. Sousa and C. S. Kiminami, “Crystallization and corrosion resistance of amorphous FeCuNbSiB”, Journal of Non-Crystalline Solids, vol.219, p.155-159, 1997.
[10].W. H. Peter, R. A. Buchanan, C. T. Liu, P. K. Liaw, M. L. Morrison, J. A. Horton, C. A. Carmichael Jr. and J. L. Wright, “Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state”, Intermetallics, vol.10, p.1157-1162, 2002.
[11].A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties”, Materials Science and Engineering, vol.304-306, p.1-10, 2001.
[12].M. Telford, “The case for bulk metallic glass”, Materialstoday, vol.7, p.36-43, 2004.
[13].P. T. Chiang, et al. “Surface Antimicrobial Effects of Zr61Al7.5Ni10Cu17.5Si4 Thin Film Metallic Glasses onEscherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans”, Fooyin Journal of Health Sciences, vol.2, p.12-20, 2010.
[14].C. W. Chu, et al. “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films, vol.517, p.4930-4933, 2009.
[15].W. He, et al. “Biocompatibility Study of Zirconium-Based Bulk Metallic Glasses for Orthopedic Applications”, Metallurgical and Materials Transactions A, vol.41, p.1726-1734, 2010.
[16].J. Schroers, “Bulk metallic glasses for biomedical applications”, Journal of The Minerals, Metals and Materials Society, vol.61, p.21-29, 2009.
[17].J.Kramer, “Produced the first amorphous metal through vapor deposition”, Annn Phys, vol.19, p.37, 1934.
[18].A. Brenner, D. E. Couch, E. K. Williams, “Electro Deposition of Alloys ” , J. Res. Nat. Bur. Stand., vol.44, p.109, 1950.
[19].W. Klement, R. H. Wilens and P. Duwez, “Non-crystalline Structure in solidified Gold-Silicon alloys”, Nature, vol.187, p.869-870, 1960.
[20].D. Turnbull, “Phase changes”, Solid State Phys., vol.3, p.225, 1956.
[21].D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy systems”, J. Phys., vol.35, p.1-10, 1974.
[22].H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, vol.41, p.1237, 1970.
[23].A. Inoue, “Bulk amorphous alloys with soft and magnetic properties”, Mater. Sci. Eng. A, vol.226-228, p.357, 1997.
[24].A. peker, W.L. Johnson, “A highly processable metallic glass : Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Appl. Phys. Lett., vol.63, p.2342, 1993.
[25].A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater., vol.48, p.279~306, 2000.
[26].A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, “Cu-based bulk glassy alloys with high tensile strength of over 2000 MPa”, Journal of Non-Crystalline Solids, vol.304, p.200~209, 2002.
[27].A. Inoue, “Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems”, Progress in Materials Science, vol.43, p.365~520, 1998.
[28].V. Schroeder, C. J. Gilbert, R. O. Ritchie, “Comparison of the Corrosion Behavior of a Bulk Amorphous Metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5, with Its Crystallized Form”, Scripta Materialia, vol.38, p.1481~1485, 1998.
[29].A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering, vol.226-228, p.357-363, 1997.
[30].A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol.36, p.866-875, 1995.
[31].A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol.269-272, p.855-864, 1998.
[32].A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol.29, p.1779-1793, 1998.
[33].R. E. Reed-Hill, Physical Metallurgy Principles, Boston, USA, 1994.
[34].R.W. Cahn, P. Hassen, E.J. Kramer(ed), “Glasses and amorphous materials”, Science and Technology, vol.9, p. 292, 1991.
[35].W. H. Wang, C. Dong, C. H. Shek, “Bulk Metallic Glasses”, Materials Science and Engineering: R, vol.44, p. 45-89, 2004.
[36].Makoto Takagi, Yoshihito Kawamura, Hiroyasu Saka, Toru Imura, “Effect of preparation technique and atmosphere on the mechanical properties of bulk amorphous alloy compacts”, Mater. Sci. Eng. :A, vol.133, p.301~306, 1991.
[37].A. Inoue, T. Zhang, N. Nishiyama,, K. Ohba, T. Masumoto, “Preparation of 16 mm Diameter Rod of Amorphous Zr65Al7.5Ni10Cu17.5 Alloy”, Mater. Trans. JIM, vol.34, p.1234~1237, 1993.
[38].K. Amiya, N. Nishiyama, A. Inoue, T. Masumoto, “Mechanical strength and thermal stability of Ti-based amorphous alloys with large glass-forming ability”, Mater. Sci. Eng. : A, vol.179-180, p.692~696, 1994.
[39].A. Kato, H. Horikiri, A. Inoue, T. Masumoto, “Microstructure and mechanical properties of bulk Mg70Ca10Al20 alloys produced by extrusion of atomized amorphous powders”, Mater. Sci. Eng. : A, vol.179-180, p.707-711, 1994.
[40].H. Kato, Y. Kawamura, A. Inoue, “High Tensile Strength Bulk Glassy Alloy Zr65Al10Ni10Cu15 Prepared by Extrusion of Atomized Glassy Powder”, Mater. Trans. JIM, vol.37, p.70~77, 1996.
[41].A. Inoue, T. Nakamura, N. Nishiyama, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Mater. Trans. JIM, vol.33, p.937~945, 1992.
[42].E. S. Park, H. G. Kang, W. T. Kim, D. H. Kim, “ effect of Ag addition on the glass-forming ability of Mg–Cu–Y metallic glass alloys”, J. non-cryst. solids, vol.279, p.154~160, 2001.
[43].K. Matusita, T. Komatsu and R. Yokota,“Kinetics of nonisothermal crystallization process and activation energy for crystal growth in amorphous materials.” J. Mater. Sci., 19, P.291-295, 1984.
[44].W. A. Johnson, K. F. Mehl, “phase transformation theory and research”, Trans. Am. Inst. Mining Met. Eng., vol.135, p.315,1981.
[45].賴耿陽,IC 製程之濺射技術,復漢出版社,民國86年。
[46].V. Bellido-González, N. Stefanopoulos F. Deguilhen, “Friction Monitored Scratch Adhesion Testing”, Surface and Coatings Technology, vol.74-75, p.884-889, 1995
[47].C.T. McCarthy, M. Hussey, M.D. Gilchrist. “On the sharpness of straight edge blades in cutting soft solids: Part I – indentation experiments”, Engineering Fracture Mechanics, vol.74, p.2205-2224,2007.
[48].惠希東、陳國良,塊體非晶合金,化學工業出版社,北京,民國95年
[49].賴耿陽,“薄膜製作工藝學”,復漢出版社,民國88 年。
[50].賴耿陽,“IC 製程之濺射技術”,復漢出版社,民國86 年。
[51].衛泰宇、李正中,“光學薄膜製鍍技術及應用”,行政院國科會光電小組,民國88 年。
指導教授 鄭憲清(Jason Shian-Ching Jang) 審核日期 2011-7-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare