博碩士論文 983203047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.147.47.167
姓名 邱柏宇(Bo-yu Chiou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 金屬氫化物儲氫容器之設計製作與實驗分析
(Design and experimental analysis a metal-hydride storage tank.)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文為金屬氫化物儲氫容器之設計製作與實驗分析,儲氫罐設計包括氫氣通道、空間分割及熱傳增強。儲氫金屬罐體熱傳效率對儲氫金屬儲、放氫行為有明顯影響,因此罐體設計主要概念在於儲氫金屬進行儲氫的過程,能迅速地將生成熱從罐體內部導出;放氫時則需由從罐體外部提供充足的熱能。罐體熱傳遞增強之設計結構,具有提高整體儲氫金屬等效熱傳導率之功能,以增強儲氫金屬粉末內部熱傳效率;此結構亦將罐體儲氫空間分割用以裝填金屬粉末,均勻的分散儲氫金屬於各分隔空間,使底層堆積之微細粉末比例減少,降低儲氫金屬緻密堆積對儲、放氫效率的不良影響。結構上具有氫氣通道設計,確保進行反應時氫氣可藉由管路流通、傳導至各巢室之分隔空間中。
原型儲氫金屬罐體進行實驗發現,放氫時罐體具有較好的熱傳效果,可使儲氫金屬維持良好的操作裝態。當罐體放氫出口流率設定為12 LPM時,放氫後期無法維持設定流率的現象明顯;流率降低為4 LPM後即有效改善。由儲氫金屬粉末的溫度與罐體壓力等數值變化可發現:在較高的放氫出口流率設定時,金屬粉末溫度下降較多,且量測點距離罐體底部或是熱管套筒等熱傳途徑較短時,量測溫度可以較快趨近外界溫度。放氫實驗前期罐體壁面熱傳比熱管熱傳效果好,但在後期壁面熱傳量則因為罐體溫差減少而逐漸下降被熱管熱傳量超越。裝置熱管可使放氫出口流率維持設定值之時間較長。放氫速率對於罐體溫度變化的影響,相較於控制水浴溫度來說更為明顯,這可能是由於熱管的最高熱傳極限不足所致,但是提高水浴溫度仍可使放氫流率更為穩定。
摘要(英) This thesis presents a metal hydride storage tank (M-H tank) design. The tank consisted of hydrogen tunnels, volume partition and heat transfer enhancers, and was analyzed experimentally. Heat transfer efficiency had significant effect on hydrogen absorption and desorption processes of the M-H tank, therefore the main concepts of the design were to drive out the generated heat quickly in the absorption process and to provide sufficient heat energy in the desorption process. The heat transfer enhancing structures improved the overall thermal conductivity of the metal hydride due to not only enhancing the inner heat transfer in the metal hydride powders but also splitting the storage volume to distribute the metal powders evenly in the M-H tank. The splited space reduced the accumulation of the fine powders at the bottom and improved the efficiency in the reaction processes. The tank was equipped with the hydrogen tunnels designed to ensure hydrogen being able to flow unobstructedly to each splited space during the reaction processes.
Results from experiments showed this prototype M-H tank had good thermal transfer efficacy, and made the metal powders to maintain a better state of operation. The hydrogen discharging rate set at 12 LPM was not sustainable at the latter part of the desorption processes. However, the discharging rate at 4 LPM was virtually maintained till the end of hydrogen desoption.. Exeriments also revealed that the higher the discharging flow rates the more drastic temperature drops of the metal powders. Temeratures closed to the bottom of the M-H tank or the heat pipe sleeve were found to approach the outside temperature rapidly. The heat transfer had better transfer efficiency at the M-H tank wall than at the heat pipe during the initial course of the desorption process, but had an opposite trend during the latter course. Assembly of the heat pipe allowed the hydrogen discharging to be maintained at the setted value for a longer time. Because the power limit of the heat pipe was too low, controlling the rates of hydrgen desorption was more effective than controlling the temperature of water bath for the M-H tank, However, increasing the temperature of the water bath could stabilize the hydrogen discharging rates.
關鍵字(中) ★ 金屬儲氫罐
★ 金屬氫化物
★ 儲氫罐設計
關鍵字(英) ★ Tank design
★ Metal hydride
★ Hydrogen storage canister
★ LaNi5
論文目次 目錄
中央大學碩士論文授權書
論文指導教授推薦書
論文口試委員審定書
中文摘要  i
英文摘要  ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論  1
1.1 前言  1
1.2 金屬儲氫方法  3
1.2.1 金屬合金儲氫、放氫原理  4
1.2.2 儲氫金屬合金  6
1.2.3 PCI曲線  7
1.3 金屬儲氫容器發展與設計  9
1.4 研究動機  14
第二章 新型金屬儲氫容器設計  19
2.1 金屬儲氫罐設計概念  19
  2.1.1 熱傳增強  19
2.1.2 容器隔間、空間切割  20
  2.1.3 氫氣通道  20
2.1.4 模組化 21
2.2 熱管元件  21
2.3 儲氫罐體設計參數與裝填流程  22
2.3.1 罐體設計參數 23
2.3.2 罐體裝填流程 24
第三章 實驗方法  36
3.1 實驗系統架設  36
3.1.1 實驗系統  36
3.1.2 管路控制裝置  37
3.1.3 實驗數據擷取裝置  37
3.2 實驗程序  37
3.2.1 西韋茨(Sieverts type)量測法  37
3.2.2 實驗環境條件設定  38
  3.2.3 金屬粉末製備與活化  38
  3.2.4 儲氫實驗與流程  40
  3.2.5 放氫實驗與流程  41
  3.2.6 還原金屬儲氫罐實驗初始狀態  41
  3.2.7 實驗系統誤差分析  42
第四章 結果與討論  49
4.1 設計型儲氫罐性能測試  49
  4.1.1 儲氫罐儲氫性能  49
  4.1.2 儲氫罐放氫性能  50
4.1.3 水浴溫度對儲氫罐放氫性能的影響  51
  4.1.4 熱管對於儲氫罐放氫性能的影響  52
4.2 熱傳設計與實驗條件對罐體溫度分佈的影響  53
  4.2.1 水浴溫度對於儲氫罐儲氫反應溫度分佈的影響  53
  4.2.2 出口流率對於儲氫罐儲氫反應溫度分佈的影響 55
4.3 實驗條件對罐體溫度變化的影響  57
  4.3.1 放氫流率對於儲氫罐溫度變化趨勢的影響  57
  4.3.2 水浴溫度對於放氫儲氫罐溫度變化的影響 58
  4.3.3 熱管對於各放氫流率之儲氫罐溫度變化的影響 59
第五章 結論與未來展望  89
5.1 結論  89
5.2 未來展望  91
參考文獻  92
附錄A 儲氫罐機械設計  96
A.1 儲氫罐壁厚設計  96
A.2 儲氫罐中空殼管壁厚設計  98
A.3 儲氫罐端面壁厚設計  99
A.4 選用儲氫罐密封蓋之螺絲螺帽對  101
A.5 螺紋鎖緊力之規範與選用  102
A.6 螺紋承載軸方向負荷有效牙數計算  104
A.7 密封裝置O型環選用與安裝擠壓量  106
附錄B 儲氫罐熱傳特性  108
B.1 儲氫罐熱阻估算  108
B.2 恆溫水浴對於儲氫罐之熱傳特性  116
B.3 儲氫罐儲氫之放熱生成量  119
B.4 儲氫罐固定流率放氫之吸熱率  121
附錄C 經研磨之金屬粉末孔隙率測量  123
C.1 金屬粉末之孔隙率  123
C.2 儲氫罐體之金屬粉末填充率  125
參考文獻 Anani, A., Visintion, A., Petrov, K., Srinivasan, S. “Alloys for hydrogen Storage in Nickel/Hydrogen and Nickel/Metal Hydride Batteries”, Journal of Power Sources 1994; 47: pp.261-275.
Askri, F., Jemni, A., Nasrallah, SB. “Prediction of transient heat and mass transfer in a closed metal-hydrogen reactor”, International Journal of Hydrogen Energy 2004; 29: pp.195-208.
Bhouri, M., Goyette, J., Hardy, B.J., Anton, D.L. “Honeycomb metallic structure for improving heat exchange in hydrogen storage system”, International Journal of Hydrogen Energy 2011; 36: pp.6723-6738.
Botzung, M., Chaudourne, S., Gillia, O., Perret, C., Latroche, M., Percheron-Guegan A. , Marty, P. “Simulation and experimental validation of a hydrogen storage tank with metal hydrides”, International Journal of Hydrogen Energy 2008, 33: pp.98-104.
Brendan, D., MacDonald, A., Rowe, M. “Impacts of external heat transfer enhancements on metal hydride storage tanks”, International Journal of Hydrogen Energy 2006; 31: pp.1741-1731.
Cui, N., Luo, J.L., Chuang, , K.T. “Study of hydrogen diffusion in a- and b-phase hydrides of Mg2Ni alloy by microelectrode technique” Journal of Electroanalytical Chemistry 2001; 503:92-98
Demircan, A., Demiralp, M., Kaplan, Y., Mat, Md., Veziroglu, TN. “Experimental and theoretical analysis of hydrogen absorption in LaNi5-H2 reactor”, International Journal of Hydrogen Energy 2005; 30: pp.1437-1446.
Dhaou, H., Souahlia, A., Mellouli, S., Askri, F., Jemni, A., Nasrallah, SB. “Experimental study of a metal hydride vessel based on a finned spiral heat exchanger”, International Journal of Hydrogen Energy 2010; 35: pp.1674-1680.
Guan, J.C., Yeh, M.T. (2003). U.S. Patent No. 6,666,034. Washington, DC:
U.S. Patent and Trademark Office.
Jemni, A., Nasrallah, S.B., Lamloumi, J. “Experimental and theoretical study of a metal-hydrogen reactor”, International Journal of Hydrogen Energen 1999; 24: pp.631-644.
Kaplan, Y. “Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors”, International Journal of Hydrogen Energy 2009; 34: pp.2288-2294
Lin, C.K., Huang, S.M., Jhang, Y.H. “Effects of cyclic hydriding- dehydriding reactions of Mg2Ni alloy on the expansion deformation of a metal hydride storage vessel”, Journal of Alloys and Compounds 2011; 509: pp.7162-7167; 264: pp.271-276.
Martin, M., Gommel, C., Borkhart, C., Fromm, E. “Absorption and desorption kinetics of hydrogen storage alloys”, Journal of Alloys and Compounds 1996; 238: 193-201.
Mellouli, S., Askri, F., Dhaou, H., Jemni, A., Nasrallah, SB. “A novel design of a heat exchanger for a metal-hydrogen reactor”, International Journal of Hydrogen Energy 2007; 32: 3501-3507.
Nasako, K., Ito, Y., Hiro, N., Osumi, M. “Stress on a Reaction Vessel by the Swelling of a Hydrogen Absorbing Alloy”, Journal of Alloys and Compounds 1998; 264: pp.271-276
Nishizaki, T., Miyamoto, M., Miyamoto, K., Yoshida, K., Yamaji, K., Nakata, Y.
(1984). U.S. Patent No. 4,457,136. Washington, DC:U.S. Patent and Trademark Office.
Pebler, A., Gulbransen, E.A. “Equilibrium Studies on the Systems ZrCr2-H2,
ZrV2-H2 and ZrMo2-H2 Between 0℃ and 900℃”, Trans. Metall. Soc. AIME 1967; Vol.239: pp.1593.
Reilly, J.J., Wiswall, R.H. “The reaction of Hydrogen with Alloys of Magnesium and
Nickel and the Formation of Mg2NiH4”, Inorganic Chemistry 1968; Vol.7: pp.2254.
Reilly, J.J., Wiswall, R.H. “Formation and Properties of Iron Titanium Hydride”,
Inorganic Chemistry 1974; Vol.13: pp.218.
Sandrock, G. “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds 1999; 293-295: 877-888.
Scaff, J.H., Schumacher, E.E. “Some Theoretical and Practical Aspects of Gases in Metals”, Bell System Technical Journal 1933; 12: pp.178-196
Sieverts published a useful r?sum? of his work, with references to the original articles in Zeit fur Metalkunde, 21, 37 (1929)
Stetson, N.T., Marchio, M., Holland, A., Alper, D., Gorman, D., Yang, J.(2003).
U.S. Patent No. 6,626,323. Washington, DC:U.S. Patent and Trademark Office.
Vucht, J.H.N., Kuijpers, F.A., Bruning, H.C.A.M. “Reversible Room-Temperature
Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Res. Repts. 1970; Vol.25: pp.133.
Z?ttel, A. “Materials for hydrogen storage”, Materials Today 2003; September: 24-33.
CNS壓力容器安全檢查構造標準,行政院勞工委員會,勞安2字第0970146112號(民97年11月7日)
大西清 ,機械設計製圖便覽,洪榮哲、黃廷合 編譯,全華出版社,2005。
毛宗強,氫能-21世紀的綠色能源,新文京開發,2008。
曲新生、陳發林,氫能技術,五南書局,2006。
汽車用螺紋緊固件緊固扭矩,國家技術工業局標準編號: QC/T 518-1999。
李方正,新能源,新文京開發,2009。
依日光,熱管技術理論實務,復漢出版社,1998。
胡子龍,儲氫材料,曉園出版社,2006年。
財團法人工業技術研究院(民92)。專利編號I223905。臺北市:經濟部智慧財產局。
漢氫科技股份有限公司(民95)。專利編號I267605。臺北市:經濟部智慧財產局。
廖世傑,儲氫技術及應用簡介,工業材料2002;Vol.190:pp.139。
指導教授 鍾志昂(Ching-ang Chung) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明