博碩士論文 92343009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:52.15.170.196
姓名 梁吉雄(Chi-Hsiung Liang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 主動式擺鎚吸振器控制之研究
(Studies on control of the active pendulum vibration absorber)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是以倒傳遞類神經網路、基因演算法及模糊理論結合倒傳遞類神經網路為基礎的控制器應用在離心式擺鎚吸震器的主動式控制,藉由所提出的控制器來調整離心式擺鎚吸震器的擺鎚扭矩參數,使得系統的反共振頻率(anti-resonance frequency)偏移,來降低轉盤的震動量。經由推導主動式擺鎚吸震器的動態數學模式,繪出擺鎚扭矩參數變化與轉盤震動及擺鎚最大振幅的頻率響應圖。當系統的擾動頻率改變時,可藉由所提出的控制器找出最佳的擺鎚扭矩參數值,使系統的轉盤震動達到最小值。由系統的模擬結果可以看出所提出的控制器在擾動頻率改變時能有效的使旋轉震動降低到所期望的值。
摘要(英) In this study, the back-propagation (BP) neural network algorithm, genetic algorithms (GAs) and fuzzy back-propagation neural network are proposed for active control of a centrifugal pendulum vibration absorber (CPVA). The proposed algorithms are applied in this case to regulate the anti-resonance frequency in an active pendulum vibration absorber (APVA), by suppressing vibration of the carrier. The dynamic model of the APVA was developed and simulated using MATLAB. In the simulation results, when the variations of the excitation frequency, the controllers will find the optimal variables to determine an appropriate value such that the vibration amplitude of the carrier is minimized. A comparison of the carrier vibration results for the BP neural network algorithm, the genetic algorithm and fuzzy back-propagation neural network are performed. The simulation results demonstrate the effectiveness of the proposed APVA for reducing the carrier vibrations.
關鍵字(中) ★ 離心式擺鎚
★ 吸振器
★ 主動振動控制
關鍵字(英) ★ active vibration control
★ centrifugal pendulum
★ vibration absorber
論文目次 中文摘要 I
ABSTRACT II
CONTENTS III
LIST OF FIGURES V
LIST OF TABLES VIII
NOMENCLATURE IX
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 ACTIVE PENDULUM VIBRATION ABSORBER SYSTEM 17
2-1 CPVA SYSTEM MODELING 17
2-2 CPVA SYSTEM LINEAR ANALYSIS 26
2-3 FREQUENCY RESPONSE OF THE NONLINEAR APVA WITH ALTERED VALUES 50
CHAPTER 3 APVA USING A BACK-PROPAGATION NEURAL NETWORK 53
3-1 BACK PROPAGATION NEURAL NETWORK 53
3-2 BLOCK DIAGRAM OF THE NEURAL NETWORK BASED CONTROL SYSTEM FOR THE APVA 54
3-3 DYNAMIC BACKPROPAGATION FOR THE NEUROIDENTIFIER 57
3-4 DYNAMIC BACKPROPAGATION FOR THE NEUROCONTROLLER 60
3-5 CONVERGENCE AND STABILITY 64
3-6 RESPONSE OF THE NONLINEAR APVA ALTERING VALUES AT SPECIFIC FREQUENCIES 74
3-7 SIMULATION RESULTS 76
CHAPTER 4 GENETIC ALGORITHM OPTIMIZATION PROCEDURE FOR THE APVA 91
4-1 GENETIC ALGORITHM OPTIMIZATION PROCEDURE 91
4-2 INITIALIZATION 92
4-3 EVALUATE THE FITNESS FUNCTION 93
4-4 GENETIC OPERATORS 94
4-5 ELITIST STRATEGY 96
4-6 KNOWLEDGE BASE 96
4-7 DESIGN OF GENETIC ALGORITHMS FOR THE APVA 96
4-8 SIMULATION RESULTS 99
CHAPTER 5 DESIGN OF A FUZZY BP NEURAL NETWORK CONTROLLER FOR THE APVA 108
5-1 FUZZY BP NEURAL NETWORK CONTROL ALGORITHM 108
5-2 BLOCK DIAGRAM OF THE FUZZY BP CONTROLLER FOR THE APVA 114
5-3 SIMULATION RESULTS 116
CHAPTER 6 CONCLUSIONS 127
REFERENCES 129
參考文獻 [1] W. T. Thomson, Theory of Vibration with Applications (2nd edition). Englewood cliffs, Prentice-Hall, New Jersey, 1981.
[2] G. Genta, Vibration Dynamics and Control, Springer Science Business Media, New York, 2009.
[3] K. Wilson, Practical Solution of Torsional Vibration Problems, 3rd edition, vol. IV, Chapman & Hall Ltd, London,1968.
[4] E. S. Taylor, “Eliminating crack shaft vibration in radial aircraft engines,” Transactions of the Society of Aeronautical Engineers, vol. 38, pp. 81-87, 1936.
[5] J. P. Den Hartog, Mechanical Vibrations, 4th edition, McGraw-Hill Book Company, Inc., New York, N. Y., chapt. 5, 1956.
[6] D. E. Newland, “Nonlinear aspects of the performance of centrifugal pendulum vibration absorbers,” Journal Engineering for Industry, Transaction of the ASME, vol. 86, August, pp. 257-263, 1964.
[7] M. Sharif-Bakhitar and S. W. Shaw, “The dynamic response of a centrifugal pendulum vibration absorber with motion-limiting stops,” Journal of Sound and Vibration, vol. 126, pp. 221-235, 1988.
[8] M. Sharif-Bakhtiar and S. W. Shaw, “Effects of nonlinearities and damping on the dynamic response of a centrifugal pendulum vibration absorber,” Journal of Vibration and Acoustics, Transaction of the ASME, vol. 114, July, pp. 305-311, 1992.
[9] D. L. Cronin, “Shake reduction in an automobile engine by means of crankshaft-mounted pendulums,” Mechanism and Machine Theory, vol. 27, no. 5, pp. 517-533, 1992.
[10] B. Demeulenaere, P. Spaepen and J. D. Schtter, “Input torque balancing using a cam-based centrifugal pendulum: design procedure and example,” Journal of Sound and Vibration, vol. 283, pp. 1-20, 2005.
[11] A. G. Haddow and S. W. Shaw, “Centrifugal pendulum vibration absorber: an experimental and theoretical investigation,” Nonlinear Dynamics, vol. 34, pp. 293-307, 2003.
[12] Y. J. Wang, C.D. Chen and C. K. Sung, “Design of a frequency-adjusting device for harvesting energy from a rotating wheel,” Sensors and Actuators A: Physical, vol. 159, pp. 196-203, 2010.
[13] S. G. Tewani, B. L. Walcott and K. E. Rouch, “Active optimal vibration control using dynamic absorber,” IEEE International Conference on Robotics and Automation, pp. 1182-1187, 1991.
[14] Y. D. Chen, C. C. Fuh, P. C. Tung, Application of voice coil motors in active dynamic vibration absorbers, IEEE Transactions on Magnetics vol. 41, no. 3, pp. 1149-1154, 2005.
[15] M. Hosek, H. Elmali and N. Olgac, “A tunable torsional vibration absorber: the centrifugal delayed resonator,” Journal of Sound and Vibration, vol. 205, pp. 151-165, 1997.
[16] M. Hosek, N. Olgac and H. Elmali, “Torsional vibration control of MDOF systems using the centrifugal delayed resonator,” IEEE International Conference on Control Applications, October pp. 534-539, 1997.
[17] A. Blanco-Ortega, F. Beltran-Carbajal, A. Favela-Contreras and G. Silva-Navarro, “Active disk for automatic balancing of rotor-bearing systems,” American Control Conference, June 11-13, pp. 3023-3028, 2008.
[18] S. T. Wu, “Active pendulum vibration absorbers with a spinning support,” Journal of Sound and Vibration, vol. 323, pp.1-16, 2009.
[19] D. Bae, W. Jung and I. Sohn, “A fatigue design method of spot-welded lap joint using neural network,” International Journal of Modern Physics B vol. 17, Nos. 8 & 9, pp. 1684-1690, 2003.
[20] Z. J. Sun and L. L. Wang, “Studies on dynamic damage evolution for PP/PA polymer blends under high strain rates,” International Journal of Modern Physics B vol. 22, Nos. 9, 10 &11, pp. 1409-1416, 2008.
[21] M. Andrecut and M. K. Ali, “Self-organizing neural network model of the sensory-motor mechanism,” International Journal of Modern Physics B vol. 14, No. 17, pp. 1815-1824, 2000.
[22] S. Jankowski, M. Wierzbowski, P. Kaminski and M. Pawlowski, “Implementation of neural network method to investigate defect centers in semi-insulating materials,” International Journal of Modern Physics B vol. 16, Nos. 28 & 29, pp. 4449-4454, 2002.
[23] M. Kalkat, S. Yildirim and I. Uzmay, “Design of artificial neural networks for rotor dynamics analysis of rotating machine systems,” Mechatronics, vol. 15. pp. 573-588, 2005.
[24] M. T. Hangan, H.B. Demuth and M. H. Beale, Neural network design, PWS publishing company, 1996.
[25] C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Transactions on Neural Networks, vol. 6, no. 1, January, pp. 144-155, 1995.
[26] T. Yabuta and T. Yamada, “ Learning control using neural networks, “ in Proc. IEEE Int. Conf. Robotics and Automation, Sacramento, CA, Apr.1991, pp. 740-745.
[27] D. Goldberg, Genetic algorithms in Search, Optimization, and Machine Learning, Addison Wesley, New York, 1989.
[28] R. J. Patton, J. Chen, and G. P. Liu, “Roust fault detection of dynamic system via genetic algorithms,” Proceedings of the Institution of Mechanical Engineers part I Journal of Systems & Control Engineering, vol. 211, Issue 5, pp.357-364, 1997.
[29] T. T. H. Ng and G. S. B. Leng, “Application of genetic algorithms to conceptual design of a micro-air vehicle,” Engineering Application of Artificial Intelligence, vol. 15, pp. 439-445, 2002.
[30] O. E. Canyurt, “Estimation of welded joint strength using genetic algorithm approach,” International Journal of Mechanical Sciences, vol. 47, pp. 1249-1261, 2005.
[31] J. H. Hyun and C. O. Lee, “Optimization of feedback gains for a hydraulic servo system by genetic algorithms,” Proceedings of the Institution of Mechanical Engineers part I Journal of Systems & Control Engineering, vol. 212, Issue 5, pp. 395-401, 1998.
[32] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, Wiley-InterScience publication, 1997.
[33] K. Georgej and B. Yuan, Fuzzy sets and fuzzy logic theory and applications, Pearson Education Ltd, 2003.
[34] S. J. Huang and R.J. Lian, “Active vibration control of a dynamic absorber using fuzzy algorithms,” Mechatronics, vol. 6. no. 3, pp. 317-336, 1996.
[35] P. Andrzej, Fuzzy modeling and control, Phydica-Verlag a Springer-Verlag company, 2001.
[36] L. A. Zadeh, “Fuzzy set,” Information and Control, vol. 8 pp. 338-353, 1965.
[37] J. Vieira, F. M. Dias and A. Mota, “Artificial neural networks and neuro-fuzzy systems for modeling and controlling real systems: a comparative study,” Engineering Applications of Artificial Intelligence, vol. 17. pp. 265-273, 2004.
[38] M. A. Akcayol and C. Elmas, “NEFCLASS-based neuron fuzzy controller for SRM drive,” Engineering Applications of Artificial Intelligence, vol. 18. pp. 595-602, 2005.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2011-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明