參考文獻 |
[1] IPCC, IPCC special report on carbon dioxide capture and storage, Final Draft, IPCC Working Group III on Mitigation of Climate Change, 2005.
[2] Baines, S. J., Worden, R. H., “Geological storage of carbon dioxide”, Geological society, London, Special Publications, Vol. 233, pp. 1-6, 2004.
[3] Holloway, S., Savage, D., “The potential for aquifer disposal of carbon dioxide in the UK”, Energy Conversion and Management, Vol. 34, pp. 925-932, 1993.
[4] Bachu, S., “Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change”, Environmental Geology, Vol. 44, No. 3, pp. 277-289, 2003.
[5] Lin, C. K., “Algorithm for determining optimum sequestration depth of CO2 trapped by residual gas and solubility trapping mechanisms in a deep saline formation”, Geofluids, Vol. 8, pp. 333-343, 2008.
[6] APEC, Assessment of geological storage potential of carbon dioxide in the APEC region-Phase 1: CO2 storage prospectivity of selected sedimentary basins in the region in the China and south east Asia, 2005.
[7] 陳文山、李奕亨,「台灣西部平原之二氧化碳地質封存環境評估」,2009年淨煤及二氧化碳捕獲與封存技術研討會,台北,2009年12月。
[8] 工研院,「二氧化碳再利用技術及地質封存潛能評估計畫」,經濟部能源科技研究發展計畫九十八年度執行報告,工業技術研究院,共489頁,2009。
[9] Lin, A. T., Watts, A. B., Hesselbo, S. P., “Cenozoic stratiggraphy and subsidence history of the South China Sea margin in the Taiwan region”, Basin Research, Vol. 15, pp. 453-478, 2003.
[10]楊健男,「二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例」,國立中央大學,碩士論文,2010。
[11]Mondol, N. H., Bjørlykke, K., Jahren, J., Høeg, K., “Experimental mechanical compaction of clay mineral aggregates – Changes in physical properties of mudstones during burial”, Marine and Petroleum Geology, Vol. 24, pp. 289-311, 2007.
[12]Terzaghi, K., “Principles of soil mechanics: I – phenomena of cohesion of clays. IV – settlement and consolidation of clay”, Engineering News – Record, Vol. 95, No. 19, pp. 742-746 & pp. 874-878, 1925.
[13]Jones, M. E., Addis M. A., “On changes in porosity and volume during burial of argillaceous sediments”, Marine and Petroleum Geology, Vol. 2, pp. 247-253, 1985.
[14]Goulty, N. R., “Relationships between porosity and effective stress in shales”, First Break, Vol. 16, No. 12, pp. 413-419, 1998.
[15]Marcussen, Ø., Maast, T. E., Mondol, N. H., Jahren J., Bjørlykke, K., “Changes in physical properties of a reservoir sandstone as a function of burial depth – The Etive Formation, northern North Sea”, Marine and Petroleum Geology, Vol. 27, pp. 1725-1735, 2010.
[16]Athy, L. F., “Density, porosity and compaction of sedimentary rocks”, American Association of Petroleum Geologists Bulletin, Vol. 14, pp. 1-24, 1930.
[17]Dickinson, G., “Geological aspects of abnormal reservoir pressure in Gulf Coast Louisiana”, American Association of Petroleum Geologists Bulletin, Vol. 37, pp. 410-432, 1951.
[18]Hoholick, J. D., Metarko, T., Potter, P. E., “Regional variations of porosity and cement: St. Peter and Mount Simon Sandstones in Illinois Basin”, American Association of Petroleum Geologists Bulletin, Vol. 68, pp. 753-764, 1984.
[19]Schmoker, J. W., Halley, R. B., “Carbonate porosity versus depth: a prediction relation for South Florida”, American Association of Petroleum Geologists Bulletin, Vol. 66, pp. 2561-2570, 1982.
[20]Shi, T., Wang, C. Y., “Pore pressure generation in sedimentary basins: overloading versus aquathermal”, Journal of Geophysical Research, Vol. 91, No. B2, pp.2153-2162, 1986.
[21]許瑞育,「沉積岩應力相關之流體特性與沉積盆地之孔隙水壓異常現象」,國立中央大學,碩士論文,2007。
[22]Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., Wu, Y. H., Sone, H., “Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A”, International Journal of Rock Mechanics & Mining Sciences, Vol. 47, pp. 1141-1157, 2010.
[23]David, C., Wong, T. F., Zhu, W., Zhang, J., “Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust”, Pure and Applied Geophysics, Vol. 143, No. 1/2/3, pp. 425-456, 1994.
[24]Morrow, C. A., Shi, L. Q., Byerlee, J. D., “Permeability of fault gouge under confining pressure and shear stress”, Journal of Geophysical Research, Vol. 89, No. B5, pp. 3193-3200, 1984.
[25]Lambe, T. W., Whitman, R. V., Soil mechanics, John Wiley & Sons, New York, 1969.
[26]吳文傑,「應力歷史相關之沉積岩孔隙率模型」,國立中央大學,碩士論文,2009。
[27]Yang, Y., Aplin, A.C., “Permeability and petrophysical properties of 30 natural mudstones”, Journal of Geophysical Research, Vol. 112, pp. 1-24, 2007.
[28]Yang, Y., Aplin, A. C., “A permeability-porosity relationship for mudstones”, Marine and Petroleum Geology, Vol. 27, pp. 1692-1697, 2010.
[29]Bernabé, Y., Mok, U., Evans, B., “Permeability-porosity relationship in rocks subjected to various evolution processes”, Pure and Applied Geophysics, Vol. 160, pp. 937-960, 2003.
[30]Smith, J. E., “The dynamics of shale compaction and evolution of pore-fluid pressure”, Mathematical Geology, Vol. 3, No. 3, pp. 239-263, 1971.
[31]Bethke, C. M., “A numerical model of compaction-driven ground water flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins”, Journal of Geophysical Research, Vol. 90, No. B8, pp. 6817-6828, 1985.
[32]Dugan, B., Flemings, P. B., “Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps”, Science, Vol. 289, pp. 288-291, 2000.
[33]Jacobs, W., Van Kesteren, W. G. M., Winterwerp, J. C., “Permeability and consolidation of sediment mixtures as function of sand content and clay mineralogy”, International Journal of Sediment Research, Vol. 22, No. 3, pp. 180-187, 2007.
[34]Ghabezloo, S., Sulem, J., Guédon, S., Martineau, F., “Effective stress law for the permeability of a limestone”, International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 297-306, 2009.
[35]Malkovsky, V. I., Zharikov, A. V., Shmonov, V. M., “New methods for measuring the permeability of rock samples for a single-phase fluid”, Physics of the Solid Earth, Vol. 45, No. 2, pp. 89-100, 2009.
[36]Holloway, S., “Storage of fossil fuel-derived carbon dioxide beneath the surface of the earth”, Annual Review of Energy and the Environment, Vol. 26, pp. 145-166, 2001.
[37]Marty, B., Dewonck, S., France-Lanord, C., “Geochemical evidence for efficient aquifer isolation over geological timeframes”, Nature, Vol. 425, pp. 55-58, 2003.
[38]Hildenbrand, A., Schlömer, S., Krooss, B. M., “Gas breakthrough experiments on fine-grained sedimentary rocks”, Geofluids, Vol. 2, pp. 3-23, 2002.
[39]Huysmans, M., Dassargues, A., “Hydrogeological modeling of radionuclide transport in low permeability media: a comparison between Boom Clay and Ypresian Clay”, Environmental Geology, Vol. 50, No. 1, pp. 122-131, 2006.
[40]Bickle, M., Chadwick, A., Huppert, H.E., Hallworth, M., Lyle, S., “Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage”, Earth and Planetary Science Letters, Vol. 255, pp. 164-176, 2007.
[41]Kozeny, J., “Ueber kapillare Leitung des Wassers im Boden”, Stizungsber Akad Wiss Wine, Vol. 136, pp. 271-306, 1927.
[42]Carman P. C., “Fluid flow through granular beds”, Teansactions-Institution of Chemical Engineeres, Vol. 15, pp. 150-167, 1937.
[43]Wong, P. Z., Koplik, J., Tomanic, J. P., “Conductivity and permeability of rocks”, Physical Review B, Vol. 30, No. 11, pp. 6606-6614, 1984.
[44]Bryant, S., Blunt, M., “Prediction of relative permeability in sample porous media”, Physical Review A, Vol. 46, No. 4, pp. 2004-2011, 1992.
[45]Schwartz, L. M., Martys N., Bentz, D. P., Garboczi, E. J., Torquato, S., “Cross-property relations and permeability estimation in model porous media”, Physical Review E, Vol. 48, No. 6, pp. 4548-4591, 1993.
[46]Koponen, A., Kataja, M., Timonen, J., “Permeability and effective porosity of porous media”, Physical Review E, Vol. 56, No. 3, pp. 3319-3325, 1997.
[47]Singh, V. P., Kinematic wave modeling in water resources: Enviromental hydrology, Wiley, New York, 1997.
[48]Xu, P., Yu, B., “Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry”, Advances in Water Resources, Vol. 31, pp. 74-81, 2008.
[49]翁孟嘉,「麓山帶砂岩之力學特性及其與微組構關係研究」,國立台灣大學,博士論文,2002。
[50]Ioannidis, M. A., Kwiecien, M. J., Chatzis, I., “Statistical analysis of the porous microstructure as a method for estimating reservoir permeability”, Journal of Petroleum Science and Engineering, Vol. 16, pp. 251-261, 1996.
[51]Fossen, H., Schultz, R. A., Shipton, Z. K., Mair, K., “Deformation bands in sandstones: A review”, Journal of the Geological Society, Vol.164, pp, 755-769, 2007.
[52]Lin, A.T., Watts, A.B., “Origin of the West Taiwan Basin by orogenic loading and flexure of a rifted continental margin”, Journal of Geophysical Research, Vol. 107, No. B9, pp. 1-19, 2002.
[53]American Society for Testing and Materials, “Test method for permeability of granular soils (Constant Head)”, ASTM D2434-68, 1974.
[54]ISRM, “Rock characterization testing and monitoring”, ISRM Suggested Method, E. T. Brown (eds.), Pergamon Press, Oxford, United Kingdom, 1981.
[55]Tanikawa, W., Shimamoto, T., Wey, W. K., Wu, W. Y., Lin, C. W., Lai, W. C., “Sedimentation and generation of abnormal fluid pressure in the focal area of 1999 Taiwan Chi-Chi earthquake”, Proceeding of the ISRM International Symposium , 3rd ARMS, pp. 553-557, Tokyo, Japan, 2004.
[56]Tanikawa, W., Shimamoto, T., “Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks”, Hydrology and Earth System Sciences Discussions, Vol. 3, pp. 1315-1338, 2006.
[57]Tanikawa, W., Shimamoto, T., “Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks”, International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 229-238, 2009.
[58]黃旭燦、楊耿明、吳榮章、丁信修、李長之、梅文威、徐祥宏,「台灣陸上斷層帶地質構造與地殼變形調查研究(5/5)-台灣西部麓山帶地區地下構造綜合分析」,經濟部中央地質調查所報告93-13號,2004。
[59]Klinkenberg, L. J., “The permeability of porous media to liquids andgases”, American Petroleum Institute, drilling and production practices, pp.200-213, 1941.
[60]American Society for Testing and Materials, “Standard Test Method for Sieve Analysis of Surfacing for Asphalt Roofing Products”, ASTM D452-91, 2002.
[61]American Society for Testing and Materials, “Standard Test Method for Particle-Size of Soils”, ASTM D422-63, 2007.
[62]American Society for Testing and Materials, “Standard Test Method for Specific Gravity of Soils by Water Pycnometer”, ASTM D854-06, 2006.
[63]Boggs, S., Principles of Sedimentology and Stratigraphy, Fourth edition, Prentice Hall, 2006.
[64]Pettijohn, F. J., Potter, P. E., Siever, R., Sand and sandstone, Springer-Verlag, Berlin, 1987.
[65]Anselmetti, F. S., Luthi, S., Eberli, G. P., “Quantitative characterization of carbonate pore system by digital image analysis”, Journal of AAPG Bulletin, Vol. 82, No. 10, pp. 1815-1836, 1998.
[66]Image J,取自http://rsb.info.nih.gov/ij/index.html。
[67]Pape, H., Clauser, C., Iffland, J., “Variation of permeability with porosity in pandstone diagenesis interpreted with a fractal pore space model”, Journal of AAPG Bulletin, Vol. 82, No. 10, pp. 1815-1836, 1998.
[68]林怡男,「應力歷史對麓山帶沉積岩孔隙率及滲透率應力相依模式影響之探討」,國立中央大學,碩士論文,2009。
|