博碩士論文 982203047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.149.238.197
姓名 陳嘉祥(Jia-Shiang Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 二氧化鈦奈米管陣列之製備及其光電化學的應用
(Fabrication of Titania Nanotube Arrays for Photoelectrochemical Applications)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中發展出兩步驟的陽極氧化法,並藉由草酸之選擇性溶解,能獲得獨立式雙開孔之二氧化鈦奈米管陣列薄膜,且此薄膜具備大面積,不捲曲,銳鈦礦相的特性,操作流程簡單、製備容易。二氧化鈦奈米管陣列擁有一維的垂直通道能使電子順暢傳輸,以及管狀結構散射光線能有效提升光的利用率,故其光電化學特性皆優於傳統的二氧化鈦奈米顆粒。因此我們將獨立式雙開孔之二氧化鈦奈米管陣列薄膜應用至染料敏化太陽能電池、量子點敏化太陽能電池中,並且也直接將陽極氧化在鈦金屬板上的二氧化鈦奈米管陣列,應用於太陽光水分解產氫反應。在太陽能電池方面,我們利用溶膠凝膠法合成之二氧化鈦奈米顆粒作為黏著劑,將獨立式雙開孔之二氧化鈦奈米管陣列轉移至FTO導電玻璃上,並應用於正光照射模式之染料敏化太陽能電池中,先比較不同長度變因之二氧化鈦奈米管陣列,在吸附N719染料後,於AM 1.5模擬太陽光照射下(100 mW/cm2),得到最佳效率之光電轉換效率為7.82 %;其管長為35 μm,接著藉由光電流-電壓(I-V)曲線、入射單色光子-電子轉化效率的量測(IPCE)以及電化學阻抗分析(EIS)證實獨立式雙開孔之二氧化鈦奈米管陣列薄膜電極,能有效提高光的吸收與電子的收集能力,進而比單開孔之二氧化鈦奈米管陣列薄膜增加了66 %的光電轉換效率,由4.7 %提升至7.82 %。我們再將獨立式雙開孔之二氧化鈦奈米管陣列應用於量子點敏化太陽能電池上,如同DSSCs之實驗方法進行其光電轉換效率的量測,在經由改變沉積硫化鎘次數以及改變二氧化鈦奈米管陣列長度之變因後,得到最佳光電轉換效率的樣品為經由連續離子層吸附反應(SILAR)法沉積硫化鎘七次,並加入氧化鋅層保護硫化鎘以避免其被電解液所腐蝕,所量測的光電轉換效率為1.57 %;而單開孔之二氧化鈦奈米管陣列的光電轉換效率為0.94 %,相較之下也提升了67 %。最後我們直接將陽極氧化在鈦金屬板上的二氧化鈦奈米管陣列,應用於太陽光水分解反應,在經由改變沉積硫化鎘次數以及二氧化鈦奈米管陣列長度之變因後,並測量其水分解之光電轉換效率,得到最佳光電轉換效率的樣品為經由SILAR法沉積硫化鎘五次,管長為20 μm,所量測的平衡電流密度(J-0.4V)為6.98 mA/cm2,光電轉換效率為 6.8 %。
摘要(英) In this study, we report an effective method to produce large-area, free-standing, crystallized and opened-end TiO2 nanotube arrays (TiNT-array) by two-step anodization and oxalic acid selectively dissolve. TiO2 nanotube arrays have one-dimensional channel for transporting electrons and efficiently harvesting the energy from the light that bring in superior than TiO2 nanoparticle derivatives in term of photoelectrochemical performance. Therefore we have applied the prepared TiNT-array to use in dye sensitized solar cells (DSSCs), quantum dot sensitized solar cells (QDSSCs) and solar water splitting. In DSSCs, the free-standing and opened-end TiNT-array was adhered onto FTO glass by sol-gel TiO2 nanoparticles paste. The transparent photoanod consisted of the opened-end TiNT-array film for DSSCs were obtained. As compare to the different tube lengths of TiNT-array. After sensitizing with N719 dye, the optimum solar conversion efficiency is 7.82 % under AM 1.5 simulated sunlight with front-side illumination. Furthermore, we utilized photocurrent – voltage curves, incident photon-to- current conversion efficiency (IPCE) measurement and electrochemical impedance spectroscopy (EIS) to analysis the photoelectron characteristic of TiNT-array. To contrast the closed-end TiNT-array, the used of opened-end TiNT-array exhibited an increase in efficiency from 4.7 % to 7.82 %, corresponding to 66 % enhancement due to its better mass transport as well as enhanced light harvesting and electron collection efficiency. When using free-standing and opened-end TiNT-array in QDSSCs, the maximum efficiency of 1.57 % was obtained by CdS quantum dots via 7 times SILAR process and ZnO protective layer. To contrast the closed-end TiNT-array, the used of opened-end TiNT-array exhibited an increase in efficiency from 0.94 % to 1.57 %, corresponding to 67 % enhancement. Finally, in the solar water splitting, considerably high photoconversion efficiencies of 6.8% and stable photocurrentdensity of 6.98 mA/cm2 was obtained by the CdS quantum dots sensitized TiNT-array/Ti , which was prepared by 5 times SILAR process.
關鍵字(中) ★ 二氧化鈦奈米管陣列
★ 陽極氧化法
★ 染料敏化太陽能電池
★ 量子點敏化太陽能電池
★ 太陽光水分解
★ 連續離子層吸附反應法
★ 硫化鎘
關鍵字(英) ★ CdS
★ SILAR
★ Solar water splitting
★ Quantum dots sensitized solar cells
★ Dye-sensitized solar cells
★ Anodic oxidation
★ TiO2 nanotube arrays
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1.1 太陽能電池簡介 2
1.2 染料敏化太陽能電池 5
1.2.1 染料敏化太陽能電池工作原理 6
1.2.2 影響DSSCs光電轉換效率之因素探討 8
1.3 量子點敏化太陽能電池 15
1.3.1 量子點之特性介紹 15
1.3.2 量子點合成及組裝技術 20
1.3.3 量子點敏化太陽能電池之發展現況 21
1.4 水分解(Water Splitting)製氫 23
1.5 一維結構二氧化鈦奈米管之文獻回顧 26
1.5.1 陽極氧化法製備二氧化鈦奈米管陣列 27
1.5.2 二氧化鈦奈米管陣列之應用 31
1.5.3 獨立式二氧化鈦奈米管陣列薄膜之研究 34
1.5.4 雙邊開孔之獨立式二氧化鈦奈米管陣列薄膜 38
1.6 研究動機 41
第二章 實驗方法 42
2.1 藥品及儀器 42
2.2 樣品製備 44
2.2.1 二氧化鈦奈米管陣列(TiNT-array) 44
2.2.2 染料敏化太陽能電池(DSSC)之光陽極 46
2.2.3 硫化鎘(CdS)敏化太陽能電池之光陽極 48
2.2.4 水分解反應之工作電極 51
2.3 材料特性分析 53
2.3.1 場發射掃描式電子顯微鏡 53
2.3.2 高解析穿透式電子顯微鏡 53
2.3.3 能量分散式X光光譜 54
2.3.4 X-射線繞射光譜 54
2.3.5 紫外光-可見光光譜 55
2.4 太陽能電池組裝與量測 56
2.4.1 電池組裝與設備裝置 56
2.4.2 數據分析及特性評估 57
2.4.3 DSSC染料吸附量計算 65
2.5 太陽光水分解反應 66
2.5.1 水分解反應設備裝置 66
2.5.2 數據分析及特性評估 68
第三章 結果與討論 70
3.1 獨立雙開孔式二氧化鈦奈米管陣列薄膜之研究 70
3.1.1 煆燒溫度之影響 71
3.1.2 陽極氧化法時間之影響 74
3.1.3 草酸侵蝕時間對於底部開孔程度之影響 77
3.1.4 最佳化製備條件總結 78
3.2 染料敏化太陽能電池(DSSCs)之特性評估 80
3.2.1 正光模式之TiNT-array/FTO光陽極製備 80
3.2.2 二氧化鈦奈米管陣列長度之探討 81
3.2.3 二氧化鈦奈米管陣列與傳統奈米顆粒之比較 85
3.2.4 雙開孔與單開孔之比較 87
3.3 硫化鎘敏化太陽能電池(CdS-SSCs)之特性評估 92
3.3.1 CdS/TiNT-array/FTO光陽極之特性鑑定 93
3.3.2 硫化鎘層數對於光電轉換效率之探討 99
3.3.3 二氧化鈦奈米管陣列長度之探討 101
3.3.4 雙開孔與單開孔之比較 103
3.4 太陽光水分解(Solar Water Splitting)之應用 105
3.4.1 CdS/TiNT-array/Ti工作電極之特性鑑定 106
3.4.2 硫化鎘層數對於水分解光電轉換效率之探討 109
3.4.3 二氧化鈦奈米管陣列長度之探討 112
第四章 結論 115
參考文獻 117
參考文獻 1. M. Gratzel, “Photoelectrochemical cells”, Nature 414 (2001) 338-344.
2. 呂宗昕。『全面攻進奈米科技與太陽電池』。天下文化(2009年)
3. L. Kazmerski, National Renewable Energy Laboratory (NREL)
4. M. Gratzel, “Photovoltaic and photoelectrochemical conversion of solar energy”, Phil. Trans. R. Soc. A 365 (2007) 993-1005.
5. M. Gratzel, “Dye-sensitized solar cells”, J. Photochem. Photobiol. C 4 (2003) 145-153.
6. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature 261 (1976) 402-403.
7. B. O’Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737-740.
8. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Y. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%”, Jpn. J. Appl. Phys. 25 (2006) 638-640.
9. M. Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorg. Chem. 44 (2005) 6841-6851.
10. M. Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A 164 (2004) 3-14.
11. H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa and M. Tachiya “Electron Injection Efficiency from Excited N3 into Nanocrystalline ZnO Films: Effect of (N3−Zn2+) Aggregate Formation”, J. Phys. Chem. B, 107 (2003) 2570-2574.
12. M. Gratzel﹐“Perspectives for dye-sensitized nanocrystalline solar cells”, Prog. Photovolt. Res. Appl. 8 (2000) 171-185.
13. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel﹐“Investigation of sensitizer adsorption and the influence of protons on current and voltagen of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B 107 (2003) 8981-8987.
14. Md. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am. Chem. Soc. 123 (2001) 1613-1624.
15. C. Y. Chen, M. k. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. h. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, “Highly Efficient Light- Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS Nano. 3 (2009) 3103–3109.
16. Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida “Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization”, Phys. Chem. Chem. Phys. 7 (2005) 4157-4163.
17. Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida, S. Yoshikawa, “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells”, Cent. Eur. J. Chem. 4 (2006) 476-488.
18. Memming, R., Semiconductor Electrochemistry, 1st ed., Wiley-Veh, New 64 York, 264-274 (2001)
19. W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II -VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers”, Angew. Chem. Int. Ed. 41 (2002) 2368
20. W. W. Yu, L. Q. W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals”, Chem. Mater. 15 (2003) 2854.
21. A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots:Applications to Ultrahigh-Efficiency Solar Photon Conversion”, Inorganic Chemistry 44 (2005) 6893.
22. H. M. Pathan and C. D. Lokhande, “Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method”, Bull. Mater. Sci. 27 (2004) 85–111.
23. J. Zhang, L. Sun, C. Liao and C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method”, Solid State Communications 124 (2002) 45.
24. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films”, J. Am. Chem. Soc. 128 (2006) 2385.
25. R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion”, Phys. Rev. Lett. 92 (2004) 186601.
26. R. Plass, S. Pelet, J. Krueger and M. Gratzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells”, J. Phys. Chem. B 106 (2002) 7578.
27. S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargrnt, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics”, Nature Materials 4 (2005) 138.
28. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture”, J. Am. Chem. Soc. 130 (2008) 4007-4015
29. Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles”, J. Am. Chem. Soc. 127 (2005) 7632.
30. Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser, D. R. Klug and J. R. Durrant, “Modulation of the Rate of Electron Injection in Dye-Sensitized Nanocrystalline TiO2 Films by Externally Applied Bias”, J. Phys. Chem. B 105 (2001) 7424.
31. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen and G. Hodes, “Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells”, Journal of Photochemistry and Photobiology A: Chemistry 181(2006) 306.
32. A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature 37 (1972) 238.
33. C. A. Grimes, O. K. Varghese, S. Ranjan “Light, Water, Hydrogen”, Springer (2008)
34. J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, “Titanium dioxide for solar-hydrogen I. Functional properties”, Int. J. Hydrogen Energy 32 (2007) 2609-2629.
35. M. Paulose, G. K. Mor, C. A. Grimes, “Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays”, J. Photochem. Photobio. A: Chemistry 178 (2006) 8-15.
36. K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, A. J. Frank, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells”, J. Phys. Chem. B 107 (2003) 7759.
37. J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban, “Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate Mesoporous Dye-Sensitized Solar Cells”, J. Phys. Chem. B 108 (2004) 8106.
38. Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, S. Yanagida, “Dye-Sensitized TiO2 Nanotube Solar Cells: Fabrication and Electronic Characterization”, Phys. Chem. Chem. Phys. 7 (2005) 4157.
39. S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, S. Yoshikawa, “Highly Efficient Dye-Sensitized Solar Cell Using Nanocrystalline Titania Containing Nanotube Structure”, J. Photochem. Photobiol. A 164 (2004) 145.
40. J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, K. J. Kim, “TiO2 Nanorods as Additive to TiO2 Film for Improvement in the Performance of Dye-Sensitized Solar Cells”, J. Photochem. Photobiol. A 180 (2006) 184.
41. B. Tan, Y. Wu, “Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites“, J Phys. Chem. B 110 (2006) 15932.
42. C. J. Lin, W. Y. Yu, S. H. Chien, “Effect of Anodic TiO2 Powder as Additive on Electron Transport Properties in Nanocrystalline TiO2 Dye-Sensitized Solar Cells”, Appl. Phys. Lett. 91 (2007) 233120.
43. K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, “Enhanced Charge- Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays”, Nano Lett. 7 (2007) 69.
44. V. Zwilling; M. Aucouturier; E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach ”, Electrochim. Acta. 45 (1999) 921-929.
45. D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation", J. Mater. Res. 16 (2001) 3331.
46. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Enhanced Photocleavage of Water Using Titania Nanotube Arrays”. Nano Letters 5 (2005) 191-195.
47. Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Mater. Res. 20 (2005) 230-236.
48. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes, J. Mater. Res., 2003, 18, 2588-2593.
49. G. K. Mor, O. K. Varghese, M. Paulose, C. A. Grimes, Adv. Funct. Mater., 2005, 15, 1291-1296.
50. J. Zhao; X. Wang; R. Chen; L. Li,“Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid-State Commun. 134 (2005) 705-710.
51. G. K. Mor; O. K. Varghese; M. Paulose; N. Mukherjee; C. A. Grimes,“Fabrication of tapered, conical-shaped titania nanotubes”, J. Mater. Res.18 (2003) 2588-2593.
52. J. M. Macak, H. Tsuchiya, A. Ghicov, P. Schmuki, “Dye-sensitized anodic TiO2 nanotubes”, Electrochem. Commun. 7 (2005) 1133.
53. G. K Mor, K. Shankar, M. Paulose,O. K. Varghese, C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”, Nano Lett. 6 (2006) 215.
54. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin, “Backside Illuminated Dye-sensitized Solar Cells Based on Titania Nanotube Array Electrodes”, Nanotechnology 17 (2006) 1446.
55. C. A. Grimes, “Synthesis and application of highly ordered arrays of TiO2 nanotubes”, J. Mater. Chem.17 (2007) 1451.
56. C. J. Lin, W. Y. Yu, S. H. Chien, “Rough Conical-Shaped TiO2 Nanotube Arrays for Flexible Back-Illuminated Dye-Sensitized Solar Cells”, Appl. Phys. Lett. 93 (2008) 133107.
57. C. J. Lin, W. Y. Yu, Y. T. Lu, S. H. Chien, “Fabrication of Opened- End High-Aspect-Ratio Anodic TiO2 Nanotube Film for Photocatalytic and Photoelectrocatalytic Applications,” Chem. Commun. (2008) 6031.
58. K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, “Enhanced Charge- Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays”, Nano Lett. 7 (2007) 69.
59. M. Paulose, K. Shankar, O. K Varghese, G. K. Mor, C. A. Grimes, “Application of Highly-Ordered TiO2 Nanotube-Arrays in Heterojunction Dye-Sensitized Solar Cells”, J. Phys. D: Appl. Phys. 39 (2006) 2498.
60. J. H. Park, T. W. Lee and M. G. Kang, “Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells“, Chem. Commun. (2008) 2867.
61. Q. W. Chen and D. S. Xu, “Large-Scale, Noncurling, and Free- Standing Crystallized TiO2 Nanotube Arrays for Dye- Sensitized Solar Cells”, J. Phys. Chem. C 113 (2009) 6310.
62. C. J. Lin, W. Y. Yu and S. H. Chien, “Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye- sensitized solar cells”, J. Mater. Chem. 20 (2009) 1073–1077
63. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Ceram. Soc. 80 (1997) 3157.
64. S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Gratzel, “Control of Dark Current in Photoelectrochemical (TiO2/I--I3–) and Dye-Sensitized Solar Cells”, Chem. Commun. (2005) 4351.
65. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Gratzel, “Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers X = Cl-, Br-, I-, CN-, and SCN- on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc. 115 (1993) 6382.
66. P. M. S. Monk. 『Fundamentals of Electroanalytical Chemistry』 8.2 『Electroanalytical Measurements Involving Impedance』 John Wiley & Sons Ltd. (2001)
67. 吳浩青,李永舫。『電化學動力學』第七章『電極交流阻抗』。科技圖書公司(2001年)。
68. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy”, J. Phys. Chem. B 110 (2006) 13872-13880.
69. J. J. Wu, G. R. Chen, H. H. Yang, C. H. Ku, J. Y. Lai, “Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells”, Appl. Phys. Lett. 90 (2007) 213109.
70. 蕭光宏。『二氧化鈦微結構對染料敏化太陽能電池光電效能的影響』碩士論文,國立台灣大學化學系。台北,2008。
71. L. Y. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, R. Yamanaka, “Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance”, Appl. Phys. Lett. 86 (2005) 213501.
72. M. Gratzel, “Mesoscopic solar cells for electricity and hydrogen production from sunlight”, Chem. Lett. 34 (2005) 8-13.
73. N. Vlachopoulos, P. Liska, J. Augustynski, M. Gratzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am. Chem. Soc. 110 (1988) 1216-1220.
指導教授 簡淑華、高憲明
(Shu-Hua Chien、Hsien-Ming Kao)
審核日期 2011-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明