博碩士論文 992204009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.137.210.13
姓名 廖芝淇(Chih-chi Liao)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 酵母菌粒線體Gln-tRNAGln的形成
(Formation of Gln-tRNAGln in the yeast mitochondria)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在細胞中,有兩種合成Gln-tRNAGln的路徑,一種是和GlnRS有關的直接路徑,另一種是和轉胺酶GatFAB有關的間接路徑。之前的研究發現,在酵母菌Saccharomyces cerevisiae中,部分細胞質的GlnRS會被送到粒線體中,因此他們推測酵母菌粒線體可能是利用直接路徑來合成Gln-tRNAGln,但是最近的研究發現酵母菌粒線體是經由間接路徑來合成Gln-tRNAGln,那麼酵母菌粒線體中GlnRS執行甚麼功能有待進一步的研究。在本篇論文中,我們利用報導基因試驗以及免疫螢光分析來標定酵母菌GlnRS的粒線體標的訊號,實驗結果顯示: 粒線體標的訊號不在其胺基端,而是位於GlnRS中靠近活化區的一段序列。這是一個非常特別的例子,GlnRS的標的訊號在蛋白質進到粒線體後不會被切除。另外,我們發現,在EcGlnRS的胺基端接上Arc1p可以提供GLN4 剔除株生長所必須的酵素活性,若進一步在此融合蛋白質的胺基端加上一段粒線體標的訊號則此融合蛋白質可以取代粒線體內間接合成Gln-tRNAGln的路徑,這些發現突顯了基因平行轉移的可能性,利用直接合成Gln-tRNAGln的路徑取代間接合成路徑。
摘要(英) There are two pathways for Gln-tRNAGln formation in the cell, a direct pathway, which involves GlnRS, and an indirect pathway, which involves a GatFAB transamidase. In Saccharomyces cerevisiae, early research indicated that a portion of cytoplasmic GlnRS was transported into the mitochondria. It was thus proposed that the yeast mitochondria may employ a direct pathway to form Gln-tRNAGln. However, a recent study argued that an indirect pathway is actually involved in the synthesis of mitochondrial Gln-tRNAGln. As a result, the true biological function of the imported GlnRS in the mitochondria is still elusive. In this study, we used reporter gene assays, and immunofluorescence analysis to map the mitochondrial targeting signal of yeast GlnRS. Our results showed that the signal is located at an internal segment close to the active site of the enzyme. This might be one of few examples of mitochondrial matrix proteins that use an uncleavable internal sequence as the mitochondrial targeting signal. On the other hand, we found that fusion of Arc1p to EcGlnRS enables the bacterial enzyme to rescue the growth defect of a GLN4 knockout strain. Further fusion of a mitochondrial targeting signal to the fusion enzyme Arc1p-EcGlnRS enabled the enzyme to replace the indirect pathway for Gln-tRNAGln formation in the mitochondria. These findings underscore the possibility of a horizontal transfer event, where an indirect pathway for Gln-tRNAGln formation is substituted for by a direct pathway.
關鍵字(中) ★ tRNA合成酶
★ 酵母菌
★ 粒線體
關鍵字(英) ★ tRNA synthetase
★ yeast
★ mitochondria
論文目次 中文摘要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
圖 目 錄 vii
表 目 錄 ix
縮寫檢索表 x
第一章 緒論 - 1 -
1.1 Aminoacyl-tRNA synthetases (aaRSs)的簡介 - 1 -
1.1.1 aaRS的功能 - 1 -
1.1.2 aaRS 的分類 - 2 -
1.2 Gln-tRNAGln 的合成 - 3 -
1.2.1合成Gln-tRNAGln 的途徑 - 3 -
1.2.2 間接合成Gln-tRNAGln - 4 -
1.2.3 酵母菌Saccharomyces cerevisiae中Gln-tRNAGln的合成 - 4 -
1.3 Glutaminayl-tRNA synthetase (GlnRS)的簡介 - 5 -
1.3.1 GlnRS的生化特性 - 5 -
1.3.2 GlnRS的演化 - 6 -
1.4 粒線體標的訊號 ( Mitochondrial targeting signal) - 7 -
1.5 非專一性tRNA結合蛋白 - 8 -
1.5.1 Arc1p - 8 -
1.6 研究目的 - 9 -
第二章 材料與方法 - 10 -
2.1 菌株、載體及培養基 - 10 -
2.2 大腸桿菌勝任細胞的製備與轉型作用 - 11 -
2.2.1大腸桿菌勝任細胞的製備 - 12 -
2.2.2大腸桿菌勝任細胞的轉型作用 (transformation) - 13 -
2.3 酵母菌勝任細胞的製備與轉型作用 - 13 -
2.3.1酵母菌勝任細胞的製備 - 13 -
2.3.2酵母菌勝任細胞的轉型作用 - 14 -
2.4 質體之選殖 - 14 -
2.5 點突變 (Site-directed Mutagenesis) - 15 -
2.6 功能性互補試驗 (Complementation)―測試細胞質功能 - 16 -
2.7 功能性互補試驗 (Complementation)―測試粒腺體功能 - 17 -
2.8 蛋白質製備 (Protein preparation) - 19 -
2.9 SDS-PAGE之蛋白質分子量分析 - 20 -
2.10 西方點墨法 (Western Blotting) - 20 -
2.11 粒線體標的訊號報導基因試驗 (MTS reporter gene assay) - 22 -
2.12 免疫螢光分析 (immunofluorescence analysis) - 23 -
第三章 結果 - 24 -
3.1 ScGlnRS粒線體標的訊號位於胺基酸524-564區間。 - 24 -
3.2 點突變讓ScGlnRS胺基酸片段失去粒線體標的訊號的活性。 - 24 -
3.3 特定的點突變使全長的ScGlnRS無法進入粒線體。 - 26 -
3.4 真核生物間GlnRSs的相互關係。 - 28 -
3.5 原核和真核生物GlnRSs之間的關係。 - 31 -
第四章 討論 - 35 -
4.1 ScGlnRS的粒線體標的訊號 - 35 -
4.2 GlnRS的演化 - 37 -
參考文獻 - 40 -
圖表 - 44 -
參考文獻 Arnez, J. G., and Moras, D. (1997) Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci. 22: 211-216.
Asahara, H. and Uhlenbeck, O.C. (2002) The tRNA specificity of Thermus thermophilus EF-Tu. Proc. Natl. Acad. Sci. 99: 3499-3504.
Biswas T.K., and Getz G.S. 2002 Import of yeast mitochondrial transcription factor (Mtf1p) via a nonconventional pathway. J Biol Chem. 277: 45704-45714.
Brown, J.M., and Doolittle, W.F. (1999) Gene descent, duplication and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. J. Mol. Evol. 49: 485-495.
Cavadini, P., Gakh, O., and Isaya, G. (2002) Protein import and processing reconstituted with isolated rat liver mitochondria and recombinant mitochondrial processing peptidase. Methods. 26: 298-306.
Chang, K.J., and Wang, C.C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem. 279: 13778-13785.
Deinert, K., Fasiolo, F., Hurt, E.C., and Simos, G. (2001) Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs. J. Biol. Chem. 276: 6000-6008.
Deniziak M., Sauter C., Becker H.D., Paulus C.A., Giegé R., and Kern D. (2007) Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation. Nucleic Acid Res. 35: 1421-1431.
Diekert, K., Kispal, G., Guiard, B., and Lill, R. (1999) An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc. Natl. Acad. Sci. USA 96: 11752-11757.
Frechin, M., Senger, B., Brayé, M., Kern, D., Pierre Martin, R., and Dominique Becker, H. (2009) Yeast mitochondrial Gln-tRNAGln is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes & Dev. 23: 1119-1130.
Galani, K., Großhans, H., Deinert, K., Hurt, E.C., and Simos, G. (2001) The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J. 20: 6889–6898.
Galani, K., Hurt, E., and Simos, G. (2005) The tRNA aminoacylation co-factor Arc1p is excluded from the nucleus by an Xpo1p-dependent mechanism. FEBS Lett. 579: 969-975.
Ibba, M., Hong, K.W., and Söll, D. (1996) Glutaminyl-tRNA synthetase: from genetics to molecular recognition. Genes Cells. 1: 421-427.
Ibba, M., Hong, K.W., Sherman, J.M., Sever, S., and Söll, D. (1996) Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proc. Natl. Acad. Sci. USA 93: 6953-6958.
Ibba, M., and Söll, D. (2004) Aminoacyl-tRNAs: setting the limits of the genetic code. Genes & Dev. 18: 731-738.
Lamour, V., Quevillon, S., Diriong, S., N’Guyen, V.C., Lipinski, M., and Mirande, M. (1994) Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc. Natl. Acad. Sci. USA 91: 8670-8674.
Martinis, S.A., Plateau, P., Cavarelli, J., and Florentz, C. (1999) Aminoacyl-tRNA synthetases: a family of expanding functions. EMBO J. 18: 4591–4596.
Mulero, J.J., Rosenthal, j.k., and Fox, T.D. (1994) PET112, a Saccharomyces cerevisiae nuclear gene required to maintain rho+ mitochondrial DNA. Curr. Genet. 25: 299-304.
Neupert, W. (1997) Protein import into mitochondria. Annu. Rev. Biochem. 66:863-917.
Nureki, O., O’Donoghue, P., Watanabe, N., Ohmori, A., Oshikane, H,. Araiso, Y., Sheppard, K., Söll, D. and Ishitani, R. (2010) Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nucleic Acid Res. 38:7286-7297.
Paschen, S.A., and Neupert, W. (2001) Protein import into mitochondria. IUBMB Life. 52: 101-112.
Pujol, C., Bailly, M., Kern, D., Maréchal-Drouard, L., Becker, H., and Duchêne A.M. (2008) Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants. Proc. Natl. Acad. Sci. 105: 6481-6485.
Ribas de Pouplana, L., and Schimmel, P. (2001) Two classes of tRNA synthetases suggested by sterically Compatible dockings on tRNA acceptor stem. Cell 104: 191-193.
Rinehart, J., Krett, B., Rubio, M.A., Alfonzo, J.D., and Söll, D. (2005) Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion. Genes & Dev. 19: 583–592.
Rogers M.J., Weygand-Durašević I., Schwob E., Sherman J.M., Rogers K.C., Adachi T., Inokuchi H., and Söll, D. (1993) Selectivity and specificity in the recognition of tRNA by E. coli glutaminyl-tRNA synthetase. Biochimie 75: 1083-1090.
Sanyal, A., and Getz, G.S. (1995) Import of transcription factor MTF1 into yeast mitochondria takes place through an unusual pathway. J Biol Chem. 270: 11970-11976.
Schimmel, P. (1987) Aminoacyl tRNA synthetases : general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56: 125-158.
Schön, A., Gamini Kannangara, C., Gough, S., and Söll, D. (1988) Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature. 331: 187-190.
Sheppard K., Yuan J., Hohn M.J., Jester B., Devine K.M., and Söll, D. (2008) From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acid Res. 36: 1813-1825.
Sikorski, R.S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
Simos, G., Sauer, A., Fasiolo, F., and Hurt, E.C. (1998) A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol. Cell 1: 235-242.
Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M., and C.Hurt, E. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 15: 5437-5448.
Stan, T., Brix, J., Schneider-Mergener J., Pfanner, N., Neupert, W., and Rapaport, D. (2003) Mitochondrial protein import: recognition of internal import signals of BCS1 by the TOM complex. Mol. Cell. Biol. 23: 2239-2250.
Szymañski, M., Deniziak, M., and Barciszewski, J. (2000) The new aspects of aminoacyl-tRNA synthetases. Acta Biochim Pol. 47: 821-834.
Tzagoloff, A., Gatti, D., and Gampel, A. (1990) Mitochondrial aminoacyl-tRNA synthetases. Prog Nucleic Acid Res Mol Biol. 39: 129-158.
Tzagoloff, A., and Myers, A.M. (1986) Genetics of mitochondrial biogenesis. Annu. Rev. Biochem. 55: 249-285.
葉耀榮 (2008) 探討酵母菌Glutaminyl-tRNA synthetase對於粒線體功能之影響。 中央大學碩士論文
張嘉珮 (2007) 酵母菌使用罕見轉譯起始密碼的可能性探討。 中央大學碩士論文
指導教授 王健家(Chien-chia Wang) 審核日期 2011-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明