博碩士論文 982204030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.148.113.36
姓名 林詩媛(Shih-yuan Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 血清素受體2B調控鈣離子變化影響機械性痛覺敏感
(5-HT2B regulated calcium response mediating mechanical hyperalgesia)
相關論文
★ 週邊發炎反應增加酸敏感受體- TDAG8基因在背根神經節之表現量★ 酸敏感G蛋白偶合受體,G2A,在ASIC3基因剔除小鼠中改變表現量
★ MrgB4受體專一表現於感覺神經元,且在ASIC3基因剔除小鼠中有不同的表現。★ 血清素受體2B對酸敏感離子通道3與辣椒素受體1的影響
★ 酸敏感G蛋白偶合受體在小鼠背根神經節神經元中的訊息傳導路徑★ 酸敏感G蛋白偶合受體功能上的拮抗機制
★ TDAG8活化後經由PKA與PKCε增強辣椒素受體的敏感度★ 台灣海岸植物之內生真菌多樣性研究
★ ASIC3、TRPV1或TDAG8基因缺失會減緩關節炎誘導的熱痛覺過敏並抑制衛星膠細胞表現★ 抑制OGR1表現可減緩慢性神經性疼痛藉由減少顆粒性白血球數及非IB4神經元之鈣訊號
★ 抑制OGR1及G2A表現可藉由調控非IB4神經元鈣訊號減緩酸所誘導長期疼痛★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P
★ Peripheral ASIC3 activation involves in the late phase of CCI-induced mechanical allodynia by switching CGRP-positive population from small to large diameter neurons★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults
★ G-蛋白偶合接受體與G-蛋白訊號調控蛋白之整合型資料庫★ 血清素受體2B基因在酸敏感受體3基因剔除小鼠的背根神經節中表現量增加
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 血清素(Serotonin, 5-Hydroxytryptamine, 5-HT)是一種重要的發炎調節因子,會參與疼痛以及產生痛覺敏感現象。藉由周邊組織的肥大細胞或是血小板釋放血清素,可以產生兩種調節下游機制的反應:第一,可以直接作用在血清素離子通道(5-HT3)上,使通道開起改變細胞的離子通透性,並且會使可以痛覺神經興奮;第二,血清素與細胞膜上的血清素G蛋白偶合受體 (5-HT1, 2, 4, 5, 6, 7)結合,活化下游G蛋白,進而產生一連串訊號傳遞機制。先前研究發現血清素受體2B主要表現在中小直徑(10-34 μm)的小鼠背根神經節細胞,且血清素2B/2C抑制劑可以抑制由血清素引發的機械性痛覺敏感。然而血清素受體2B在此所扮演的角色以及作用機制依舊不清楚。因此我利用注射血清素或血清素受體2B/2C的抑制劑於小鼠的後腳掌內,並培養背根神經節細胞,之後以血清素刺激觀察細胞內鈣離子含量的變化情形。研究發現血清素刺激引發三種細胞內鈣離子含量變化:短暫快速上升、延遲以及混合型。注射血清素後,細胞對血清素刺激的敏感性提升2.6倍(5.1% vs. 13.3%),IB4 (-)細胞內鈣離子含量增加2.4倍,IB4 (+)細胞則無顯著差異。在注射血清素受體2B/2C抑制劑後,細胞對血清素的敏感性下降至1.3%,短暫快速上升的鈣離子曲線亦被完全抑制,此外在IB4 (-)的細胞中,血清素可增強辣椒素引發的細胞內鈣離子含量變化,並且可經由血清素受體2B/2C抑制劑所抑制。值得注意的是注射血清素無法增強血清素引發的細胞內鈉離子變化,但是細胞內鈉離子含量變化可以受血清素受體2B/2C抑制劑所抑制,綜合以上結果顯示血清素受體2B確實參與機械性痛覺敏感現象。
摘要(英) Serotonin (5-Hydroxytryptamine, 5-HT) is one of the important inflammatory mediators in pain and hyperalgesia. 5-HT released from mast cells or platelets in peripheral tissues, can directly act on 5-HT-gated ion channel (5-HT3) to change sodium and calcium permeability and excitability of nociceptors. 5-HT can also induce chemical interaction through the activation of 5-HT G-protein coupled receptors (5-HT1, 2, 4, 5, 6, 7). Previous studies have found that 5-HT2B is highly localized in small-to-medium diameter (10-34 μm) dorsal root ganglion (DRG) neurons but not 5-HT2C. The antagonist of 5-HT2B/2C inhibits 5-HT-induced mechanical hyperalgesia. However, it remains unclear whether 5-HT2B-mediated 5-HT signaling is involved in 5-HT-induced mechanical hyperalgesia and detailed mechanisms. To address this question, I have injected 5-HT and 5-HT2B/2C antagonist into mouse hind paw and DRG were taken from injected mice to culture. Cultured neurons were stimulated by 5-HT, followed by calcium imaging. Three patterns of 5-HT-induced intracellular calcium increase were found: transient, sustained and mixed. After 5-HT-injection, the number of 5-HT-responding neurons had 2.6-fold increase (5.1% vs. 13.3%) and the 5-HT-induced calcium increase was 2.4-fold increased on ipsilateral IB4-negative neurons but not on IB4-positive neurons. 5-HT2B/2C antagonist injection reduced the number of 5-HT-responding neurons (1.3%) and inhibited the transient [Ca2+]i rise in patterns 1 and 2. I also found that capsaicin-induced calcium influx was increased on IB4-negative neurons after 5-HT-injection and the increased calcium influx was inhibited by 5-HT2B/2C antagonist. Interestingly, 5-HT-induced sodium current was not enhanced by 5-HT injection but reduced by injection of 5-HT2B/2C antagonist. These results suggest that 5-HT2B-mediated calcium response is involved in 5-HT-induced mechanical hyperalgesia.
關鍵字(中) ★ 背根神經節
★ 機械性痛覺敏感
★ 血清素受體2B
關鍵字(英) ★ DRG
★ 5-HT2B
★ mechanical hyperalgesia
論文目次 中文摘要 i
英文摘要 ii
致謝辭 iii
目錄 iv
圖目錄 vii
表目錄 viii
第一章 緒論 1
1-1 痛覺(pain) 1
1-2 痛覺傳遞過程(nociception) 2
1-3 發炎性疼痛(inflammatory pain) 3
1-4 血清素引發的發炎性疼痛與痛覺敏感現象相關的血清素受體 4
1-5 痛覺敏感相關的離子通道 6
1-5-1 辣椒素受體1(transient receptor potential vanilloid channel 1, TRPV1) 6
1-5-2 酸敏感離子通道 (acid-sensing ion channels, ASICs) 8
1-5-3 電壓調控鈉離子通道(voltage-gated sodium channel, Nav) 9
1-6 研究動機與目的 9
第二章 材料與方法 11
2-1 實驗材料 11
2-1-1 菌株 11
2-1-2 細胞株 11
2-1-3 實驗用動物 11
2-1-4 藥品 11
2-2 實驗方法 12
2-2-1 轉型作用(transformation) 12
2-2-2 細菌培養 12
2-2-3 質體製備 13
2-2-4 細胞培養 14
2-2-5 轉染作用(transfection) 15
2-2-6 鈣離子分析(single cell calcium imaging) 16
2-2-7 鈉離子分析 17
2-2-8 RNA萃取 17
2-2-9 cDNA合成 19
2-2-10 聚合酶鏈反應(polymerase chain reaction, PCR) 19
第三章 結果 21
3-1 血清素受體1A、2A、2B、2C、3A會受到血清素誘導使細胞內鈣離子含量增加 21
3-2 小鼠背根神經節細胞受血清素刺激誘導,促使細胞內鈣離子含量增加 23
3-3 血清素受體2B/2C抑制劑可抑制血清素引起短暫快速上升的鈣離子增加 24
3-4 血清素增強血清素受體2B的功能,並經由活化PLCβ路徑促使細胞內鈣離子增加 25
3-5 血清素刺激細胞後經由PKCε調節胞內鈣離子增加 26
3-6 血清素刺激引發的胞內鈣離子變化可經由細胞膜上離子通道開啟或經由胞內質網釋放大量鈣離子至細胞質 27
3-7 血清素受體2在無鈣離子的平衡溶液中,仍可受血清素誘導使細胞內鈣離子含量增加 27
3-8 IB4 (+)細胞可經由血清素受體3A調控血清素引發的胞內鈣離子含量增加,而IB4 (-)的細胞則不會 28
3-9 血清素會增強由辣椒素引起的IB4 (-)神經細胞內鈣離子增加,此現象可被血清素受體2B/2C抑制劑所抑制 29
3-10 辣椒素刺激細胞後經由PKCε調節胞內鈣離子增加 31
3-11 血清素無法增強胞內鈉離子變化,而血清素受體2B/2C抑制劑可抑制胞內鈉離子的增加 32
3-12 血清素受體2B調控鈣離子變化影響機械性痛覺敏感 33
第四章 討論 34
4-1 血清素受體2B參與調節由血清素引發的機械性痛覺敏感 34
4-2 血清素刺激引發不同型式的胞內鈣離子變化 35
4-3 血清素受體2B增強IB4 (-)細胞辣椒素受體1的功能,此現象可經由5-HT2B/2C抑制劑所抑制 39
4-4 血清素無法增強胞內鈉離子變化,而血清素受體2B/2C抑制劑可抑制胞內鈉離子的增加 41
第五章 參考文獻 43
附錄一 107
附錄二 109
附錄三 113
參考文獻 Aley KO, Levine JD (1999) Role of protein kinase a in the maintenance of inflammatory pain. The Journal of Neuroscience 19 (6):2181-2186.
Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, Chessell IP, Tate S, Green PJ, Woolf CJ (2006) The Voltage-Gated Sodium Channel Nav1.9 Is an Effector of Peripheral Inflammatory Pain Hypersensitivity. The Journal of Neuroscience 26 (50): 12852-12860.
Baker MD (2005) Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na+ current in rat and mouse sensory neurones. J Physiol 567: 851-867.
Basbaum AI, Bushnell MC (2009) Science of pain.
Bennett DLH, Michael GJ, Ramachandran N, Munson JB, Averill S, Yan Q, McMahon SB, Priestley JV (1998) A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons afternerve injury. The Journal of Neuroscience 18 (8): 3059-3072.
Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ, Snyder PM (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc. Natl. Acad. Sci. 99 (4): 2338-2343.
Bertelsena AK, Afrah AW, Gustafssonb H, Tjølsena A, Hole K, Stiller C (2003) Stimulation of spinal 5-HT2A/ 2C receptors potentiates the capsaicin- induced in vivo release of substance P-like immunoreactivity in the rat dorsal horn. Brain Research 987: 10-16.
Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau IV RW (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. 100 (21): 12480-12485.
Bölcskei K, Helyes Z, Szabó A, Sándor K, Elekes K, Németh J, Almási R, Pintér E, Pethő G, Szolcsányi J (2005) Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain 117: 368-376.
Breese NM, George AC, Pauers LE, Stucky CL (2005) Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain 115: 37-49.
Brenchat A, Romero L, Garcia M, Pujol M, Burgueno J, Torrens A, Hamon M, Baeyens JM, Buschmann H, Zamanillo D, Vela JM (2009) 5-HT7 receptor activation inhibits mechanical hypersensitivity secondary to capsaicin sensitization in mice. Pain 141: 239-247.
Cardenas LM, Cardenas CG, Scroggs RS (2001). 5HT increases excitability of nociceptor-like rat dorsal root ganglion neurons via cAMP-coupled TTX-resistant Na+ channels. J. Neurophysiol 86: 241-248.
Caterina MJ, Julius D (1999) Sense and specificity: a molecular identity for nociceptors. Neuronal and glial cell biology 9: 525-530.
Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24: 487-517.
Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306-313.
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816-824.
Cervero F, Laird JMA (1996) Mechanism of touch-evoked pain (allodynia): a new model. Pain 68: 13-23.
Cesare P, Dekker LV, Sardini A, Parker PJ, McNaughton PA (1999) Specific involvement of PKC-ε in sensitization of the neuronal response to painful heat. Neuron 23: 617-624.
Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuronspecific, proton-gated ion channel. Proc Natl Acad Sci USA 95: 10240-10245.
Chen CC, Zimmer A, Sun WH, Hall J, Brownstein MJ (2002) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc. Natl. Acad. Sci. 99: 8992-8997.
Coutaux A, Adam F, Willer J, Bars DL (2005) Hyperalgesia and allodynia: peripheral mechanisms. Joint Bone Spine 72: 359-371.
Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405: 183-187.
Deval E, Noël J, Lay N, Alloui A, Diochot S, Friend V, Jodar M, Lazdunski M, Lingueglia E (2008) ASIC3, a sensor of acidic and primary inflammatory pain. The EMBO Journal 27: 3047-3055.
Dirajlal S, Pauers LE, Stucky CL (2003) Differential response properties of IB4-positive and -negative unmyelinated sensory neurons to protons and capsaicin. The Journal of Neuroscience 89: 513-524.
Doak, G. J. and Sawynok, J. (1997) Formalin-induced nociceptive behavior and edema: involvement of multiple peripheral 5-hydroxytryptamine receptor subtypes. Neuroscience 80:939-949.
Dray A (1995) Inflammatory mediators of pain. British Journal of Anaesthesia 75: 125-131.
Eltit JM, Hidalgo J, Liberona JL, Jaimovich E (2004) Slow calcium signals after tetanic electrical stimulation in skeletal myotubes. Biophysical Journal 86: 3042-3051.
Ernberg M, Lundeberg T, Kopp S (2000) Effect of propranolol and granisetron on experimentally induced pain and allodynia/hyperalgesia by intramuscular injection of serotonin into the human masseter muscle. Pain 84, 339-346.
Eschalier A, Kayser V, Guilbaud G (1989) Influence of a specific 5-HT3 antagonist on carrageenan-induced hyperalgesia in rat. Pain 36, 249-255.
Felipe CD, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJH, Laird JMA, Belmonte C, Cervero F , Hunt SP (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392: 394-397.
Garcia-Añoveros J, Samad TA, Zuvela-Jelaska L, Woolf CJ, Corey DP (2001) Transport and localization of the DEG/ENaC ion channel BNaC1 to peripheral mechanosensory terminals of dorsal root ganglia neurons. J Neurosci 21: 2678-2686.
Giordano J., Rogers L.V. (1989) Peripherally administered serotonin 5-HT3 rceptor antagonists reduce inflammatory pain in rats. Eur. J. Pharmac. 170: 83-86.
Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB (2000) Nomenclature of voltage-gated sodium channels. Neuron 25: 365-368.
Granados-Soto V, Arguelles CF, Rocha-Gonzalez HI, Godinez-Chaparro B, Flores-Murrieta FJ, Villalon CM. (2010) The role of peripheral 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F serotonergic receptors in the reduction of nociception in rats. Neuroscience 165: 561-568.
Hagenacker T, Ledwig D, Büsselberg D (2008) Feedback mechanisms in the regulation of intracellular calcium ([Ca2+]i) in the peripheral nociceptive system: Role of TRPV-1 and pain related receptors. Cell Calcium 43: 215-227.
Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71, 533-554.
Hwang SW, Cho H, Kwak J (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl Acad. Sci. USA 97: 6155-6160.
Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R, Thomas J, Liu D, Krambis M, Liu Y, McGaraughty S, Chu K, Roeloffs R, Zhong C, Mikusa JP, Hernandez G, Gauvin D, Wade C, Zhu C, Pai M, Scanio M, Shi L, Drizin I, Gregg R, Matulenko M, Hakeem A, Gross M, Johnson M, Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc. Natl. Acad. Sci.104 (20): 8520-8525.
Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203-210.
Kayser V, Elfassi IE, Aubel B, Melfort M, Julius D, Gingrich JA, Hamon M, Bourgoin S. (2007) Mechanical, thermal and formalin-induced nocicption is differentially altered in 5-HT1A -/-, 5-HT1B -/-, 5-HT2A -/-, 5-HT3A -/-, 5-HTT-/- knock-out male mice. Pain 130: 235-248.
Kessler W, Kirchhoff C, Reeh PW, Handwerker HO. (1992) Excitation of cutaneous afferent nerve endings in vitro by a combination of inflammatory mediators and conditioning effect of substance P. Exp Brain Res 91:467-476.
Khasar SG, Lin YH, Martin A, Dadgar J, McMahon T, Wang D, Hundle B, Aley KO, Isenberg W, McCarter G, Green PG, Hodge CW, Levine JD, Messing RO (1999) A novel nociceptor signaling pathway revealed in protein kinase c e mutant mice. Neuron 24: 253-260.
Kidd BL, Urban LA (2001) Mechanisms of inflammatory pain. British Journal of Anaesthesia 87 (1): 3-11.
Krishtal O (2003) The ASICs: Signaling molecules? Modulators? TRENDS in Neurosciences 26 (9): 477-483.
Lin SY, Chang WJ, Lin CS, Huang CY, Wang HF, Sun WH (2011) Serotonin receptor 5-HT2B mediates serotonin-induced mechanical hyperalgesia. The Journal of Neuroscience 31 (4): 1410-1418.
Lingueglia E, de Weille JR, Bassilana F, Heurteaux C, Sakai H, Waldmann R, Lazdunski M (1997) A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 272: 29778-29783.
Liu M, Willmott NJ, Michael GJ, Priestley JV (2004) Differential pH and capsaicin responses of griffonia simplicifolia IB4 (IB4)-positive and IB4-negative smallsensory neurons. Neuroscience 127: 659-672.
Lu S-G, Gold MS (2008) Inflammation-induced increase in evoked calcium transients in subpopulations of rat dorsal root ganglion neurons. Neuroscience 153: 279-288.
Lummis SCR, Beene DL, Lee LW, Lester HA, Broadhurst RW, Dougherty DA (2005) Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438: 248-252.
Malmberg AB, Chen C, Tonegawa S, Basbaum AI (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKC gamma. Science 278: 279-283.
Mamet J, Baron A, Lazdunski M, Voilley N (2002) Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. The Journal of Neuroscience 22(24): 10662–10670.
Marban E, Yamagishi T, Tomaselli GF (1998) Structure and function of voltage-gated sodium channels. J Physiol 508: 647-657.
McGowan E, Hoyt SB, Li X, Lyons KA, Abbadie C (2009) A peripherally acting Nav1.7 sodium channel blocker reverses hyperalgesia and allodynia on rat models of inflammatory and neuropathic pain. Anesth Analg 109: 951-958.
Mogil JS, Breese NM, Witty M, Ritchie J, Rainville M, Ase A, Abbadi N, Stucky CL, Séguéla P (2005) Transgenic Expression of a Dominant-Negative ASIC3 Subunit Leads to Increased Sensitivity to Mechanical and Inflammatory Stimuli. The Journal of Neuroscience 25 (43): 9893-9901.
Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM (2008) Serotonin: a review. J. vet. Pharmacol. Therap. 31: 187–199.
Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Molecular Pain 1:3.
Neer EJ (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80: 249-257.
Nicholas RS, Winter J, Wren P, Bergmann R, and Woolf CJ (1999) Peripheral inflammation increases the capsaicin sensitivity of dorsal root ganglion neurons in a nerve growth factor-dependent manner. Neuroscience 91: 1425-1433.
Nichols DE, Nichols CD (2008) Serotonin Receptors. Chemical Reviews 108 (5): 1614-1641.
Nicholson R, Small J, Dixon AK, Spanswick D, Lee K (2003) Serotonin receptor mRNA expression in rat dorsal root ganglion neurons. Neurosci. Letters 337: 119-122.
Noda M, Higashida H, Aoki S, Wada K (2004) Multiple signal transduction pathways mediated by 5-ht receptors. Molecular Neurobiology 29 (1): 31-39.
Stucky CL, Lewin GR (1999) Isolectin B4-positive and negative nociceptors are functionally distinct. The journal of Neuroscience 19: 6497-6505.
Ohta T, Ikemi Y, Murakami M, Imagawa T, Otsuguro K, Ito S (2006) Potentiation of transient receptor potential V1 functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons. J Physiol 576.3: 809-822.
Perez-Pinera P, García-Suarez O, Germanà A, Díaz-Esnal B, de Carlos F, Silos-Santiago I, del Valle ME, Cobo J, Vega JA (2008) Characterization of sensory deficits in TrkB knockout mice. Neuroscience Letters 433: 43-47.
Prado WA (2001) Involvement of calcium in pain and antinociception. Brazilian a Journal of Medical and Biological Research 34: 449-461.
Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408: 21-28.
Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407: 1007-1011.
Price MP, McIllwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32: 1071-1083.
Price TJ, Flore CM (2007) Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. The journal of pain 8: 263-272.
Rocha-González HI, Herrejon-Abreu EB, López-Santillán FJ, García-López BE, Murbartián J, Granados-Soto V (2009) Acid increases inflammatory pain in rats: Effect of local peripheral ASICs inhibitors. European Journal of Pharmacology 603: 56-61.
Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE, Handwerker HO (2003) Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89: 2441-2448.
Scholz J, Woolf CJ (2002) Can we conquer pain? Nature Neuroscience 5:1062-1067.
Scroggs RS (2010) Serotonin upregulates low- and high-threshold tetrodotoxin-resistant sodium channels in the same subpopulation of rat nociceptors. Neuroscience 165: 1293-1300.
Shirai Y, Adachi N, Saito N (2008) Protein kinase Cε: function in neurons. FEBS Journal. 275: 3988-3994.
Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). British Journal of Pharmacology 129: 227-230.
Snider WD, McMahon SB (1998) Tackling pain at the source: New ideas about nociceptors. Neuron 20: 629-632.
Sommer C (2004) Serotonin in pain and analgesia. Molecular neurobiology 30: 117-125.
Staniland AA, McMahon SB (2009) Mice lacking acid-sensing ion channels (ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test. European Journal of Pain 13: 554-563.
Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiol Rev 88: 1341-1378.
Sufka KJ, Schomoburg FM, Giordano J (1992) Receptor mediation of 5-HT-induced inflammation and nociception in rats. Pharmacol Biochem Behav 41: 53-56.
Sugiura T, Bielefeldt K, Gebhart GF (2004) TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. The Journal of Neuroscience 24 (43): 9521-9530.
Sugiura T, Tominaga M, Katsuya H, Mizumura K (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J Neurophysiol 88: 544-548.
Sutherland SP, Benson CJ, Adelman JP, McCleskey EW (2001) Acidsensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA 98:711–716.
Taiwo YO, and Levine JD (1992) Serotonin is a directly-acting hyperalgesia agent in the rat. Neuroscience 48: 485-490.
Tokunaga A, Saika M, Senba E (1998) 5-HT2A receptor subtype is involved in the thermal hyperalgesic mechanism of serotonin in the periphery. Pain 76: 349–355.
Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, SkinnerK, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531-543.
Tominaga M. and Julius D. (2000). Capsaicin receptor in the pain pathway. Jpn. J. Pharmacol. 83, 20-24.
Treede RD, Meyer RA, Raja SN, Campbell JN (1992) Peripheral and central mechanisms of cutaneous hyperalgesia. Prog. Neurobiol. 38: 397-421.
Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid Anti-Inflammatory Drugs Inhibit Both the Activity and the Inflammation-Induced Expression of Acid-Sensing Ion Channels in Nociceptors. The Journal of Neuroscience 21 (20): 8026-8033.
Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386: 173-177.
Waldmann R, Lazdunski M (1998) H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8: 418-424.
Wang W, Gu J, Li YQ, Tao YX (2011) Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? Molecular Pain 7: 16-24.
Woolf CJ, Costigan M (1999) Transcriptional and posttranslational plasticity and thegeneration of inflammatory pain. Proc. Natl. Acad. Sci. 96: 7723-7730.
Woolf CJ, Mannion RJ, Neumann S (1998) Null mutations lacking substance: elucidating pain mechanisms by genetic pharmacology. Neuron 20:1063-1066.
Wu SX, Zhu M, Wang W, Wang YY, Li YQ, Yew DT (2001) Changes of the expression of 5HT receptor subtype mRNAs in rat dorsal root ganglion by complete Freund’s adjuvant-induced inflammation. Neurosci. Letters 307: 183-186.
Zeitz KP, Guy N, Malmberg AB, Dirajlal S, Martin WJ, Sun L, Bonhaus DW, Stucky CL, Julius D, Basbaum AI (2002) The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci. 22:1010-1019.
指導教授 孫維欣(Wei-hsin Sun) 審核日期 2011-11-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明