博碩士論文 982203055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:18.217.87.78
姓名 譚俊瑞(Chun-jui Tan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 染料敏化太陽能電池吸光性質的計算研究
(Theoretical Investigation of the Correlation between Molecular Structure and Absorption Spectrum of Solar-Cell Dye Sensitizers)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ Free Energy Landscape of Ca2+ Induced Lipid Micelle Fusion : Observation of a Dewetting Transition
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究使用電子密度泛函理論 (Density Functional Theory, DFT) 計算一系列新型太陽能染料分子。我們探討染料分子在質子化、去質子化,以及吸附於 (TiO2)10 cluster 三種不同狀態下的基態結構、分子軌域 (frontier molecular orbitals)、能階與吸收光譜。在結構分析的部分,分析triphenylamine, fluorene, thiophene, benzene 及 EDOT 等芳香環,其兩兩之間的共軛性;結果顯示,thiophene 及 EDOT 具有比 benzene 更好的共軛性。
另外,本研究也利用 time-dependent density functional theory (TD-DFT) 模擬出與實驗相當吻合的吸收光譜,判斷此系列有機染料分子是以質子化的狀態存在於溶劑中。當染料吸附至 (TiO2)10 cluster 時,無論是計算或實驗(吸附於 TiO2 薄膜)得到的吸收光譜,其吸收位置都比在 THF 溶劑下藍位移(> 30 nm);造成此一現象的原因,由結構分析推測,可能是由於 carboxylic groups 接到 (TiO2)10 cluster 時, carboxylic groups 與鄰近分子結構的共軛性變差。此研究也分析染料分子在照光激發前後的電子密度分佈在各個芳香環及 anchor 的變化,結果顯示分子受光激發後,電子的確由 donor 端向 acceptor/anchor 端傳遞,因而推測此系列染料分子有潛力能夠應用於染料敏化太陽能電池。
摘要(英) The ground state molecular structure, frontier molecular orbitals, energy levels, intramolecular charge transfer and absorption spectra of several newly synthesized solar-cell dye sensitizers are studied using density functional theory. The properties of these dye sensitizers are investigated under three different molecular states, protonated, deprotonated and adsorbed on (TiO2)10 cluster. Geometrical analysis summarizes the degree of conjugation of two aromatic rings such as triphenylamine, fluorene, thiophene, benzene and EDOT. Results show the thiophene and EDOT are more effective ?-conjugated spacers than benzene ring. Time-dependent density functional theory calculations show the simulated absorption spectra are excellent agreement with experimental spectra when the dye sensitizers are at their protonated states in solution. Upon adsorbing on TiO2 cluster, calculations as well as experiments show the absorption spectra are blue-shifted in relative to those in THF solution. These results are arisen from the de-conjugation of carboxylic groups when they are attached to (TiO2)10 cluster derived from geometrical analysis. The electron density difference analysis show the photoexcitation transfers the electron density on the electron-donating moiety to the acceptor/anchoring side allowing these dyes to be effective and potential in the dye-sensitized solar cell applications.
關鍵字(中) ★ 染料敏化太陽能電池
★ 金屬錯合物
★ 有機染料
關鍵字(英) ★ CPDT
★ Thiophene
★ Fluorene
★ Carbazole
★ Dye-Sensitized Solar Cell
★ Organic Dye
★ Ruthenium Complex
★ Triphenylamine
論文目次 摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures v
List of Tables vi
Chapter 1: Introduction 1
Chapter 2: Computational Methods 3
Chapter 3: Density Functional Theory Study of the Structural and Spectroscopic Features of Novel Triphenylamine-Fluorene based Donor-Spacer-Acceptor Conjugated Organic Solar-Cell Dye Sensitizers 4
3-1 Studied Systems 5
3-2 Results and Discussion 7
3-3 Summary and Conclusion 30
Chapter 4: Effects of Donor and Spacer on the Structural and Spectroscopic Properties of Novel Metal-Free Organic Dye Sensitizers 31
4-1 Studied Systems 32
4-2 Results and Discussion 33
4-3 Summary and Conclusion 50
Chapter 5: Effects of Ancillary Ligands on the Structural and Spectroscopic Properties of Ru-Complex Photosensitizers 51
5-1 Studied Systems 52
5-2 Computational Methods 54
5-3 Results and Discussion 55
5-4 Summary and Conclusion 71
Acknowledgements 72
References 72
參考文獻 (1) Ardo, S.; Meyer, G. J. Chem. Soc. Rev. 2009, 38, 115.
(2) Grätzel, M. Acc. Chem. Res. 2009, 42, 1788.
(3) De Angelis, F.; Fantacci, S.; Sgamellotti, A. Theor. Chem. Acc. 2007, 117, 1093.
(4) Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C. Angew. Chem. Int. Ed. 2006, 45, 5822.
(5) Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Ed. 2009, 48, 2474.
(6) Kamat, P. V. J. Phys. Chem. C 2007, 111, 2834.
(7) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
(8) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.
(9) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
(10) Yakhanthip, T.; Jungsuttiwong, S.; Namuangruk, S.; Kungwan, N.; Promarak, V.; Sudyoadsuk, T.; Kochpradist, P. J. Comput. Chem. 2011, 32, 1568.
(11) Pastore, M.; Mosconi, E.; De Angelis, F.; Gra?tzel, M. J. Phys. Chem. C 2010, 114, 7205.
(12) Brédas, J.-L.; Norton, J. E.; Cornil, J.; Coropceanu, V. Acc. Chem. Res. 2009, 42, 1691.
(13) Yen, Y.-S.; Hsu, Y.-C.; Lin, J. T.; Chang, C.-W.; Hsu, C.-P.; Yin, D.-J. J. Phys. Chem. C 2008, 112, 12557.
(14) Ros-Lis, J. V.; Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Spieles, M.; Rurack, K. Chem. Eur. J. 2008, 14, 10101.
(15) Jacquemin, D.; Perpete, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C. J. Chem. Theory Comput. 2007, 4, 123.
(16) Edvinsson, T.; Li, C.; Pschirer, N.; Schöneboom, J.; Eickemeyer, F.; Sens, R.; Boschloo, G.; Herrmann, A.; Müllen, K.; Hagfeldt, A. J. Phys. Chem. C 2007, 111, 15137.
(17) Hara, K.; Wang, Z.-S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S. J. Phys. Chem. B 2005, 109, 15476.
(18) Ma, R.; Guo, P.; Yang, L.; Guo, L.; Zhang, X.; Nazeeruddin, M. K.; Grätzel, M. J. Phys. Chem. A 2010, 114, 1973.
(19) Jose, R.; Kumar, A.; Thavasi, V.; Fujihara, K.; Uchida, S.; Ramakrishna, S. Appl. Phys. Lett. 2008, 93, 023125.
(20) Pastore, M.; Angelis, F. D. ACS Nano 2010, 4, 556.
(21) De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2007, 129, 14156.
(22) De Angelis, F.; Tilocca, A.; Selloni, A. J. Am. Chem. Soc. 2004, 126, 15024.
(23) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(24) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(25) Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081.
(26) Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc.: Wallingford CT, 2009.
(27) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.
(28) Lundqvist, M. J.; Nilsing, M.; Persson, P.; Lunell, S. Int. J. Quantum Chem. 2006, 106, 3214.
(29) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.
(30) O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput. Chem. 2008, 29, 839.
(31) Chen, J.-G.; Chen, C.-Y.; Wu, S.-J.; Li, J.-Y.; Wu, C.-G.; Ho, K.-C. Sol. Energy Mater. Sol. Cells 2008, 92, 1723.
(32) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
(33) De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K.; Gratzel, M. J. Am. Chem. Soc. 2007, 129, 14156.
(34) Chen, C. Y.; Wu, S. J.; Li, J. Y.; Wu, C. G.; Chen, J. G.; Ho, K. C. Adv. Mater. 2007, 19, 3888.
(35) Chen, C.-Y.; Chen, J.-G.; Wu, S.-J.; Li, J.-Y.; Wu, C.-G.; Ho, K.-C. Angew. Chem. Int. Ed. 2008, 47, 7342.
(36) Li, J.-Y.; Chen, C.-Y.; Chen, J.-G.; Tan, C.-J.; Lee, K.-M.; Wu, S.-J.; Tung, Y.-L.; Tsai, H.-H.; Ho, K.-C.; Wu, C.-G. J. Mater. Chem. 2010, 20, 7158.
(37) Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; Zakeeruddin, S. M.; Grätzel, M. ACS Nano 2009, 3, 3103.
(38) Chen, C.-Y.; Pootrakulchote, N.; Wu, S.-J.; Wang, M.; Li, J.-Y.; Tsai, J.-H.; Wu, C.-G.; Zakeeruddin, S. M.; Grätzel, M. J. Phys. Chem. C 2009, 113, 20752.
(39) Chen, C. Y.; Wu, S. J.; Wu, C. G.; Chen, J. G.; Ho, K. C. Angew. Chem. Int. Ed. 2006, 45, 5822.
(40) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
(41) Gao, X.-Q.; Pan, Q.-J.; Li, L.; Guo, Y.-R.; Zhang, H.-X.; Fu, H.-G. Chem. Phys. Lett. 2011, 506, 146.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明