博碩士論文 992206038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.128.31.227
姓名 鄭鈺潔(Yu-Chieh Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 漸進式週期光子晶體共振腔之研究
(Study of Graded Photonic Crystal Cavities)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文選擇在氮化鎵材料製作二維漸進式週期光子晶體共振腔,使光有效侷限於其中。以平面波展開法(Plane Wave Expansion, PWE) 與有限時域差分法(Finite-Difference-Time-Domain, FDTD)來分析漸進式週期光子晶體共振腔之特性,計算出結構參數,也以光侷限之方法來分析共振腔在垂直方向上的損耗,以及解釋為何高階模態會有較高的Q值。在室溫下架設微光激發光系統(Micro-Photoluminescence,???PL),量測結果發現,當激發光源功率大於0.9 mW時,成功量得於波長於?=362 nm 之雷射訊號,以高斯擬合得到半高寬為0.04 nm,換算 Q值為1×104。
摘要(英) In this study, the photonic crystals nanocavity has been designed, fabricated, and characterized in GaN bulk materials with the heterostructure which could achieve extremely high-Q factors. The device characterization was performed at room temperature using a micro-photoluminescence system. We obtain a lasing signal whose full width at half maximum (FWHM) obtained by Gaussian curve fitting is ??=0.04 nm for ?=362 nm and the threshold of excitation power is found to be 0.9 mW, corresponding to the power density of 17 kmW/cm2. The Q-factor of the cavity is as high as 104.
關鍵字(中) ★ 共振腔
★ 光子晶體
關鍵字(英) ★ cavities
★ Photonic crystals
論文目次 摘要 ................................................................................................ I
Abstract ............................................................................................... II
目錄 ............................................................................................. III
圖目錄 ............................................................................................. VI
表目錄 ............................................................................................. IX
第一章 序論 ........................................................................................ 1
1.1 光子晶體簡介 ......................................................................... 1
1.2 光子晶體共振腔文獻回顧 ...................................................... 6
1.3 研究動機 .............................................................................. 10
1.4 結論 ...................................................................................... 10
第二章 理論及模擬方法 ................................................................... 11
2.1 平面波展開法 ....................................................................... 11
2.2 有限時域差分法 ................................................................... 12
2.3 品質因子計算 ....................................................................... 17
2.4 共振腔之光侷限 ................................................................... 18
2.5 結論 ...................................................................................... 21
第三章 超高品質光子晶體共振腔設計 ............................................. 22
3.1 漸進式週期光子晶體共振腔原理介紹.................................. 22
3.2 漸進式週期光子晶體共振腔之設計與模擬 .......................... 25
3.2-1 能帶計算 ....................................................................... 26
3.2-2 共振頻率及模態計算 .................................................... 28
3.2-3 Q 值計算 ....................................................................... 32
3.2-4 光侷限之分析 ............................................................... 34
3.3 結論 ...................................................................................... 36
第四章 元件製程與量測 ................................................................... 37
4.1 元件製作方法 ....................................................................... 37
4.2 元件製程結果 ....................................................................... 39
4.3 量測系統介紹 ....................................................................... 41
4.4 光學量測 .............................................................................. 43
4.5 實驗誤差分析與討論 ............................................................ 51
4.6 結論 ...................................................................................... 52
第五章 結論與未來展望 ................................................................... 54
參考文獻 ………………………………………………………………….55
參考文獻 [1]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[2]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[3]欒丕綱、陳啟昌,「光子晶體—從蝴蝶翅膀到奈米光子學」,二版,五南圖書出版公司,台北 (2010)。
[4]J. D. Joannopoulos, S. G. Johnson, J. N. Winn et al., “Photonic Crystals - Molding the Flow of Light,” Second Edition, Princeton University Press, 41 William Street, Princeton, New Jersey 08540 (2008).
[5]http://www.lostseaopals.com.au/opals/index.asp
[6]A. R. Parker, V. L. Welch, D. Driver et al., “Structural colour - Opal analogue discovered in a weevil,” Nature 426, 786 (2003).
[7]E. Pennisi, “Naturalist's Surveys Show That British Butterflies Are Going, Going...,” Science 303, 1747 (2004).
[8]http://nanotechweb.org/cws/article/tech/36244
[9]C. Kittle, “Introduction to Solid State Physics,” 7th Ed., John Wiley & Sons, USA (2001).
[10]P. R. Berman, “Cavity quantum electrodynamics,” Academy (1994).
[11]B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155 (1998).
[12]O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[13]O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, P. D. Dapkus., “Lithographic Tuning of a Two-Dimensional Photonic Crystal Laser Array,” IEEE Photo. Tech. Lett. 12, 1126(2000).
[14]J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[15]M. I., S. Noda, A. Chutinan, T. Tokuda, M. Murata, G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316 (1999).
[16]W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B.Kochman, E. W. Berg, P. C. Yu, S. W. Pang, “Characteristics of a Photonic Bandgap Single Defect Microcavity Electroluminescent Device,” IEEE J. Quantum Electron. 37, 1153 (2001).
[17]O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[18]H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002).
[19]K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoğlu, P. M. Petroff, E. Hua, G. Jin, S. Shi, D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots, Appl. Phys. Lett. 83, 3650 (2003).
[20]K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003).
[21]C. Meier, K. Hennessy, E. D. Haberer, R. Sharma, Y. S. Choi, K. McGroddy, S. Keller, S. P. DenBaars, S. Nakamura, E. L. Hu, “Visible resonant modes in GaN-based photonic crystal membrane cavities,” Appl. Phys. Lett. 88, 031111 (2006).
[22]Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[23]H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032 (2001).
[24]H. G. Park, J. K. Hwang, J. H., H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers,” IEEE J. Quantum Electron. 38, 1353 (2002).
[25]A. Sugitatsu, T. Asano, S. Noda, “Line-defect- waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 86, 171106 (2005).
[26]S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photon. 1, 449 (2007).
[27]Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206 (2007).
[28]C. Kim, W. J. Kim, A. Stapleton, J. R. Cao, J. D. O'Brien, P. D. Dapkus, “Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,” J. Opt. Soc. Am. B 19, 1777 (2002).
[29]X. H. Yang, T. J. Schmidt, W. Shan, J. J. Song, B. Goldenberg, “Above room temperature near ultraviolet lasing from an optically pumped GaN film grown on sapphire,” Appl. Phys. Lett. 66, 1 (1995).
[30]X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, H. Cao, ” Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85, 3657 (2004).
[31]L. M. Chang, C. H. Hou, Y. C. Ting, C. C. Chen, C. L. Hsu, J. Y. Chang, C. C. Lee, G. T. Chen, and J. I. Chyi, "Laser emission from GaN photonic crystals," Appl. Phys. Lett. 89, 071116 (2006).
[32]C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, "Lasing characteristics of a GaN photonic crystal nanocavity light source," Appl. Phys. Lett. 91, 041101 (2007).
[33]H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, "GaN photonic-crystal surface-emitting laser at blue-violet wavelengths," Science 319, 445 (2008).
[34]T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, and S. Fan, "GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN∕ GaN distributed Bragg reflector," Appl. Phys. Lett. 92, 011129 (2008).
[35]K. Rivoire, A. Faraon, and J. Vuckovic, "Gallium phosphide photonic crystal nanocavities in the visible," Appl. Phys. Lett. 93, 063103 (2008).
[36]S. W. Chen, T. C. Lu, and T. T. Kao, "Study of GaN-Based Photonic Crystal Surface-Emitting Lasers (PCSELs) With AlN/GaN Distributed Bragg Reflectors," Selected Topics in Quantum Electronics, IEEE Journal of 15, 885 (2009).
[37]J. Y. Zhang, L. E. Cai, B. P. Zhang, S. Q. Li, F. Lin, J. Z. Shang, D. X. Wang, K. C. Lin, J. Z. Yu, and Q. M. Wang, "Blue-Violet Lasing of Optically Pumped GaN-Based Vertical Cavity Surface-Emitting Laser With Dielectric Distributed Bragg Reflectors," Lightwave Technology, Journal of 27, 59 (2009).
[38]C. H. Lin, J. Y. Wang, C. Y. Chen, K. C. Shen, D. M. Yeh, Y. W. Kiang and C. Yang, "A GaN photonic crystal membrane laser," Nanotechnology 22, 025201 (2011).
[39]K. Sakoda, “Opticcal Properties of Photonic Crystal,” Springer-Verlag, 2004.
[40]K.S.Yee,” Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propag, 14, 302 (1966).
[41]K. Kawano and T. Kitoh, “Introduction to Optical Waveguide Analysis,” WILEY, (2001).
[42]T. Ochiai, K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B. 63, 125107 (2001).
[43]C. Kim, W. J. Kim, A. Stapleton, J. R. Cao, J. D. O'Brien, P. D. Dapkus, “Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,” J. Opt. Soc. Am. B 19, 1777 (2002).
[44]H. Y. Ryu, J. K. Hwang, Y. H. Lee, “The Smallest Possible Whispering-Gallery-Like Mode in the Square Lattice Photonic-Crystal Slab Single-Defect Cavity,” IEEE J. Quantum Electron. 39, 314 (2003).
[45]K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," OPTICS EXPRESS 10, 671 (2002).
[46]K. Srinivasan and O. Painter, "Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals," OPTICS EXPRESS 11, 579 (2003).
[47]B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Materials 4, 207 (2005).
[48]Y. Tanaka, T. Asano, and S. Noda, "Design of Photonic Crystal NanocavityWith Q-Factor of ~109," J. Lightwave Technol. 26, 1532 (2008).
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2011-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明