博碩士論文 982206031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.191.205.129
姓名 蔡柏昇(Bo-Sheng Cai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 數位式微流道檢驗晶片之製作與校正分析
(Fabrication and Calibration in Digital Microfluidic System for Microchip Sensors)
相關論文
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ 生物晶片螢光檢測之光源模型探討★ 介電電濕式數位微流體驅動系統之探討
★ 發光二極體照明系統之色彩特性優化設計★ 以EWOD為基礎的長鏈高分子原位合成器
★ 色盲量化測試系統之研究★ 可調式自然日光模擬光源之製作
★ 演色性評估之相關性指標★ 亞精胺影響下DNA構形與DNA碎片分佈之研究
★ 生物晶片之螢光光學檢測★ 生物晶片螢光分析之微光學模組
★ 光學式生化反應即時偵測系統★ 微液滴驅動之研究與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在一般生化反應中,對樣品的分析通常包含三個典型步驟,即樣品分離處理、生物化學反應、結果檢測與分析。但此過程之程序不僅耗時且耗成本。因此本實驗提出將EWOD微流體系統做為驅動元件,感測元件則是選用波導共振方式檢測之光學元件,將兩元件整合為數位式微流道檢驗晶片,並透過電腦之控制進而使驅動與偵測能同步即時進行,並於感測元件部分設計兩個偵測點,用以進行同時多點偵測和訊號比對,使實驗量測之反應訊號更加準確。
摘要(英) As analyzing the general biochemical reactions, there are three essential processes for the diagnostics, which are sample preparation, reaction, and detection. In the conventional process, it is too much time-consuming and expensive in cost. In this study, an integrated microchip has been implemented for the improvement. With the integrated microchip, it has demonstrated the combination between the effectively actuating module and the sensitively sensing module such that the whole biochemical reaction can be diagnosed very quickly and spending small amount of samples as possible. Finally, the sensitivity of the microchip sensors has been explored.
關鍵字(中) ★ 微機電系統技術
★ 波導共振式感測元件
★ 介電質電濕式驅動元件
關鍵字(英) ★ MEMS
★ GMR
★ EWOD
論文目次 中文摘要 --------------------------------------------------------------------------------- iv
英文摘要 ---------------------------------------------------------------------------------- v
第一章 緒論 ------------------------------------------------------------------------------ 1
1-1 生物晶片 --------------------------------------------------------------------------------------- 1
1-1-1 微陣列晶片 --------------------------------------------------------------------------- 2
1-1-2 實驗室晶片 --------------------------------------------------------------------------- 4
1-1-3 數位微流體系統 --------------------------------------------------------------------- 6
1-2 生物感測器 ------------------------------------------------------------------------------------ 9
1-2-1 螢光共振能量轉換 ----------------------------------------------------------------- 10
1-2-2 表面電漿共振 ----------------------------------------------------------------------- 11
1-2-3 干涉式生物感射器 ----------------------------------------------------------------- 12
1-2-4 波導共振 ----------------------------------------------------------------------------- 13
1-3 研究動機 -------------------------------------------------------------------------------------- 13
第 二 章 原理 ------------------------------------------------------------------------- 15
2-1 電濕潤原理 ----------------------------------------------------------------------------------- 15
2-1-1 介電質電濕式 ----------------------------------------------------------------------- 16
2-1-2 介電質電濕式液滴控制 ----------------------------------------------------------- 20
2-2 波導共振原理 -------------------------------------------------------------------------------- 23
第 三 章 元件設計與製作 ---------------------------------------------------------- 25
3-1 EWOD晶片設計 ---------------------------------------------------------------------------- 25
3-1-1 EWOD晶片製作流程 ------------------------------------------------------------- 28
3-2 GMR 元件設計------------------------------------------------------------------------------ 32
3-2-1 GMR 元件製作 --------------------------------------------------------------------- 35
3-3 數位微流體系統整合 ----------------------------------------------------------------------- 45
3-3-1 數位微流體系統整合 -------------------------------------------------------------- 45
3-3-2 EWOD微流體系統控制 ---------------------------------------------------------- 46
3-3-3 EWOD晶片驅動測詴 ------------------------------------------------------------- 48
3-3-4 GMR訊號量測系統 --------------------------------------------------------------- 58
第 四 章 整合晶片測詴 ------------------------------------------------------------- 64
4-1 蔗糖水溶液混合偵測實驗 ----------------------------------------------------------------- 64
4-2 量測結果 -------------------------------------------------------------------------------------- 66
第 五 章 靈敏度分析 ---------------------------------------------------------------- 70
5-1 基板與各介面間之干涉現象 -------------------------------------------------------------- 70
5-2 訊號疊加之穿透光譜 ----------------------------------------------------------------------- 71
5-3 整合晶片之干涉現象 ----------------------------------------------------------------------- 73
5-4 EWOD晶片之干涉現象 ------------------------------------------------------------------- 75
5-5 透過頻譜分析進行訊號處理 -------------------------------------------------------------- 76
第 六 章 結論 ------------------------------------------------------------------------- 83
參考文獻 -------------------------------------------------------------------------------- 85
參考文獻 [1] T. Livache, H. Bazin, P. Caillat, and A. Roget, "Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips," in Biosensors & Bioelectronics, Anonymous (ELSEVIER ADVANCED TECHNOLOGY, 1998), pp. 629-634.
[2] P. J. Obeid and T. K. Christopoulos, "Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection," Anal. Chim. Acta 494, 1-9 (2003).
[3] D. J. Cahill, "Protein and antibody arrays and their medical applications," J. Immunol. Methods 250, 81-91 (2001).
[4] D. S. Mehta, C. Y. Lee, and A. Chiou, "Multipoint parallel excitation and CCD-based imaging system for high-throughput fluorescence detection of biochip micro-arrays," Opt. Commun. 190, 59-68 (2001).
[5] Y. Ito and M. Nogawa, "Preparation of a protein micro-array using a photo-reactive polymer for a cell-adhesion assay," Biomaterials 24, 3021-3026 (2003).
[6] J. H. Kang and J. K. Park, "Development of a microplate reader compatible microfluidic device for enzyme assay," Sens. Actuator B-Chem. 107, 980-985 (2005).
[7] Y. Huang and B. Rubinsky, "Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation," in Sensors and Actuators A-Physical, Anonymous (ELSEVIER SCIENCE SA, 2003), pp. 205-212.
[8] Affymetrix, Gene-chip Technology
http:/www.affymetrix.com/technology/index.aff
[9] D. J. Cahill, "Protein and antibody arrays and their medical applications," Journal of Immunological Methods 250, 81-91 (2001).
[10] K. Zimmermann, T. Eiter, and F. Scheiflinger, "Consecutive analysis of bacterial PCR samples on a single electronic microarray," Journal of Microbiological Methods 55, 471-474 (2003).
[11] 游佳融, 李芳仁, "功能性探討蛋白質與蛋白質的交互作用," 後基因體時代之生物技術, 51-68 (2003).
[12] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, "An integrated nanoliter DNA analysis device," Science 282, 484-487 (1998).
[13] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems: A novel concept for chemical sensing," Sensors and Actuators B: Chemical 1, 244-248 (1990).
[14] J. West, M. Becker, S. Tombrink, and A. Manz, “Micro Total Analysis Systems: Latest Achievements,” Anal. Chem. 80, 4403–4419 (2008).
[15] Petra S. Dittrich, K. Tachikawa, and A. Manz, “Micro Total Analysis Systems. Latest Advancements and Trends,” Anal. Chem. 78, 3887 (2006).
[16] A. Chandrasekaran and M. Packirisamy, “Integrated micro-total analysis system (μTAS) for biophotonic enzymatic detections,” Proc. SPIE 7555, 75551D (2010).
[17] Jesse V. Jokerst , James W. Jacobson, Bryon D. Bhagwandin, Pierre N. Floriano, Nicolaos Christodoulides and John T. McDevitt “Programmable Nano-Bio-Chip Sensors: Analytical Meets Clinical,” Anal. Chem, 82, 1571–1579 (2010).
[18] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, "An Integrated Nanoliter DNA Analysis Device," Science 282, 484 (1998).
[19] S. K. Cho, Y. Zhao, and C. Kim, "Concentration and binary separation of micro particles for droplet-based digital microfluidics," Lab Chip 7, 490-498 (2007).
[20] Gregory T.A. Kovacs., Micromachined transducers sourcebook (McGraw-Hill, 1998)
[21] L. Yobas, M. A. Huff, F. J. Lisy, and D. M. Durand, "A novel bulk-micromachined electrostatic microvalve with a curved-compliant structure applicable for a pneumatic tactile display," J Microelectromech Syst 10, 187-196 (2001).
[22] D. J. Laser and J. G. Santiago, "A review of micropumps," J Micromech Microengineering 14, R35-R64 (2004).
[23] S. Shoji, "Microsystem Technology in Chemistry and Life Science ," H. Becker, A. Manz, Eds. 194, 164-188 (1998).
[24] S. K. Cho, H. J. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," J Microelectromech Syst 12, 70-80 (2003).
[25] J. Wang, "Carbon-Nanotube Based Electrochemical Biosensors: A Review," Wiley InterScience 17.
[26] B. Palán, F. V. Santos, J. M. Karam, B. Courtois, and M. Husák, "New ISFET sensor interface circuit for biomedical applications," Sensors Actuators B: Chem. 57, 63-68 (1999).
[27] R. L. Bunde, E. J. Jarvi, and J. J. Rosentreter, "Piezoelectric quartz crystal biosensors," Talanta 46, 1223-1236 (1998).
[28] K. Ramanathan and B. Danielsson, "Principles and applications of thermal biosensors," Biosensors and Bioelectronics 16, 417-423 (2001).
[29] W. Tan, X. Fang, J. Li and X. Liu,“Molecular beacons: a noel DNA probe for nucleic acid and protein studies,”Chem. Eur. J. 6 1107-1111(2000).
[30] J. Homola, S. Yee and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,’’ Sensors and Actuators B 54, 3-5(1999).
[31] A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, "Realization of a multichannel integrated Young interferometer chemical sensor," Appl. Opt. 42, 5649-5660 (2003).
[32] N. Ganesh and Brian T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding, ” Appl. Phys. Lett. 88 , 071110 (2006).
[33] M. G. Lippmann, "Relations entre les phenomenes electrique etcapillaires," Ann. Chim. Phys. 5, 494-549 (1875).
[34] H. Matsumoto and J. E. Colgate, "Preliminary investigation of micropumping based on electrical control of interfacial tension," Micro Electro Mechanical Systems, 1990. Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE105-110 (1990).
[35] B. Berge, “Electrocapillarity and wetting of insulator films by water,” Comptes Rendus de l’Academie des Sciences Serie II, Vol. 317, pp. 157-163 (1993).
[36] H. Liu, S. Dharmatilleke, D. K. Maurya and A. A. O. Tay, “Dielectric materials for electrowetting-on-dielectric actuation,” Microsystem technologies-micro-and nanosystems-information storage and processing systems, Vol. 16, pp. 449-460 (2009).
[37] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. Kim, "Electrowetting and electrowetting-on-dielectric for microscale liquid handling," Sensors and Actuators A: Physical 95, 259-268 (2002).
[38] S. K. Cho, H. J. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," J Microelectromech Syst 12, 70-80 (2003).
[39] H. Ren, V. Srinivasan and R. B. Fair, "Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip, " TRANSDUCERS, 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Vol. 1, pp. 619-622 (2003). 38
[40] M. G. Pollack, R. B. Fair and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., Vol. 77, No. 11, pp. 1725-1726, (2000).
[41] J. Kao, M. Lin, Y. C. Hu, C. S. Yu and H. C. Hu, "Multifunctional Biochemical Biochip System, " NARL (2006).
[42] 吳建宏, "光學式生化反應即時偵測系統," 國立中央大學光電研究所 (2006).
[43] Y.Nie,L.Wang, Z. Wang and C. Lai, "Beam selector dependent on incident angle by guided-mode resonant subwavelength grating," Opt Eng.41,2966-2969 (2002).
[44] Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[45] George M. Whitesides, E. Ostuni, S.Takayama, X. Jiang, and Donald E. Ingber,"Soft lithography in biology and biochemistry," Annual Review of Biomedical Engineering, Vol. 3,pp. 335-373 (2001).
[46] 洪國騰, "電濕式驅動系統應用於微奈米級圖樣之製作, " 國立中央大學光電研究所 (2010).
[47] 林裕博, "自製平板式直壓印機與其應用," 國立中央大學光電研究所 (2010).
[48] Piramoon, http://www.piramoon.com/sucrose.php.
指導教授 楊宗勳(Tsung-Hsun Yang) 審核日期 2011-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明