參考文獻 |
[1] Avery, O. T., Macleod, C. M., McCarty, M., Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types : Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type Iii. J Exp Med 1944, 79, 137-158.
[2] Hershey, A. D., Chase, M., Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 1952, 36, 39-56.
[3] Chargaff, E., Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia 1950, 6, 201-209.
[4] Watson, J. D., Crick, F. H., Genetical implications of the structure of deoxyribonucleic acid. Nature 1953, 171, 964-967.
[5] Miller, S. L., A production of amino acids under possible primitive earth conditions. Science 1953, 117, 528-529.
[6] Oro, J., Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 1961, 191, 1193-1194.
[7] Oro, J., Kamat, S. S., Amino-acid synthesis from hydrogen cyanide under possible primitive earth conditions. Nature 1961, 190, 442-443.
[8] Robertson, M. P., Miller, S. L., An efficient prebiotic synthesis of cytosine and uracil. Nature 1995, 375, 772-774.
[9] Miyakawa, S., Yamanashi, H., Kobayashi, K., Cleaves, H. J., Miller, S. L., Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci U S A 2002, 99, 14628-14631.
[10] Orgel, L. E., Prebiotic adenine revisited: eutectics and photochemistry. Orig Life Evol Biosph 2004, 34, 361-369.
[11] Franklin, B. S., Ishizaka, S. T., Lamphier, M., Gusovsky, F., et al., Therapeutical targeting of nucleic acid-sensing Toll-like receptors prevents experimental cerebral malaria. Proc Natl Acad Sci U S A, 108, 3689-3694.
[12] Laurent, N., Sapet, C., Le Gourrierec, L., Bertosio, E., Zelphati, O., Nucleic acid delivery using magnetic nanoparticles: the Magnetofection??technology. Therapeutic Delivery, 2, 471-482.
[13] Hurley, L. H., DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2002, 2, 188-200.
[14] Tse, W. C., Boger, D. L., Sequence-selective DNA recognition: natural products and nature's lessons. Chem Biol 2004, 11, 1607-1617.
[15] Wu, J., Liu, H., Duan, X., Ding, Y., et al., Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics 2009, 25, 30-35.
[16] Chaires, J. B., Energetics of drug-DNA interactions. Biopolymers 1997, 44, 201-215.
[17] Chaires, J. B., Drug--DNA interactions. Curr Opin Struct Biol 1998, 8, 314-320.
[18] Graves, D. E., Drug-DNA interactions. Methods Mol Biol 2001, 95, 161-169.
[19] Hurley, L. H., DNA and associated targets for drug design. J Med Chem 1989, 32, 2027-2033.
[20] Lerman, L. S., The structure of the DNA-acridine complex. Proc Natl Acad Sci U S A 1963, 49, 94-102.
[21] Siddiqui-Jain, A., Grand, C. L., Bearss, D. J., Hurley, L. H., Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 2002, 99, 11593-11598.
[22] Kopka, M. L., Yoon, C., Goodsell, D., Pjura, P., Dickerson, R. E., The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc Natl Acad Sci U S A 1985, 82, 1376-1380.
[23] Mukherjee, A., Lavery, R., Bagchi, B., Hynes, J. T., On the molecular mechanism of drug intercalation into DNA: a simulation study of the intercalation pathway, free energy, and DNA structural changes. J Am Chem Soc 2008, 130, 9747-9755.
[24] Wang, A. H., Ughetto, G., Quigley, G. J., Rich, A., Interactions between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CpGpTpApCpG) at 1.2-A resolution. Biochemistry 1987, 26, 1152-1163.
[25] Gottesfeld, J. M., Neely, L., Trauger, J. W., Baird, E. E., Dervan, P. B., Regulation of gene expression by small molecules. Nature 1997, 387, 202-205.
[26] White, S., Szewczyk, J. W., Turner, J. M., Baird, E. E., Dervan, P. B., Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature 1998, 391, 468-471.
[27] Quintana, J. R., Lipanov, A. A., Dickerson, R. E., Low-temperature crystallographic analyses of the binding of Hoechst 33258 to the double-helical DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G. Biochemistry 1991, 30, 10294-10306.
[28] Rentzeperis, D., Marky, L. A., Dwyer, T. J., Geierstanger, B. H., et al., Interaction of minor groove ligands to an AAATT/AATTT site: correlation of thermodynamic characterization and solution structure. Biochemistry 1995, 34, 2937-2945.
[29] Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D., Liu, L. F., Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 1984, 226, 466-468.
[30] Wilson, W. D., Ratmeyer, L., Zhao, M., Strekowski, L., Boykin, D., The search for structure-specific nucleic acid-interactive drugs: effects of compound structure on RNA versus DNA interaction strength. Biochemistry 1993, 32, 4098-4104.
[31] Hecht, S. M., The chemistry of activated bleomycin. Accounts of Chemical Research 1986, 19, 383-391.
[32] Kane, S. A., Hecht, S. M., Sun, J.-S., Garestier, T., Helene, C., Specific cleavage of a DNA triple helix by FeII.cntdot.bleomycin. Biochemistry 1995, 34, 16715-16724.
[33] Tan, J. D., Farinas, E. T., David, S. S., Mascharak, P. K., NMR Evidence of Sequence Specific DNA Binding by a Cobalt(III)-Bleomycin Analog with Tethered Acridine. Inorg Chem 1994, 33, 4295-4308.
[34] Sherman, S. E., Gibson, D., Wang, A. H., Lippard, S. J., X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt(NH3)2(d(pGpG))]. Science 1985, 230, 412-417.
[35] Arya, D. P., Coffee, R. L., Jr., DNA triple helix stabilization by aminoglycoside antibiotics. Bioorg Med Chem Lett 2000, 10, 1897-1899.
[36] Helene, C., The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides. Anticancer Drug Des 1991, 6, 569-584.
[37] Lerman, L. S., Structural considerations in the interaction of DNA and acridines. J Mol Biol 1961, 3, 18-30.
[38] LePecq, J. B., Paoletti, C., A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol 1967, 27, 87-106.
[39] Krugh, T. R., Drug-DNA interactions. Curr Opin Struct Biol 1994, 4, 351-364.
[40] Nordmeier, E., Absorption spectroscopy and dynamic and static light-scattering studies of ethidium bromide binding to calf thymus DNA: implications for outside-binding and intercalation. J Phys Chem 1992, 96, 6045-6055.
[41] Qu, X., Wan, C., Becker, H. C., Zhong, D., Zewail, A. H., The anticancer drug-DNA complex: femtosecond primary dynamics for anthracycline antibiotics function. Proc Natl Acad Sci U S A 2001, 98, 14212-14217.
[42] Ren, J., Chaires, J. B., Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry 1999, 38, 16067-16075.
[43] Van Dyke, M. W., Hertzberg, R. P., Dervan, P. B., Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). Proc Natl Acad Sci U S A 1982, 79, 5470-5474.
[44] Chan, L. M., McCarter, J. A., The interaction of aminoacridines with DNA. Biochim Biophys Acta 1970, 204, 252-254.
[45] Deubel, V., Leng, M., Interaction between proflavine and double stranded polynucleotides. Biochimie 1974, 56, 641-648.
[46] Löber, G., On the complex formation of acridine dyes with dna-iv. The equilibrium constants of substituted proflavine and acridine orange derivatives*. Photochemistry and Photobiology 1968, 8, 23-30.
[47] Drummond, D. S., Simpson-Gildemeister, V. F. W., Peacocke, A. R., Interaction of aminoacridines with deoxyribonucleic acid: Effects of ionic strength, denaturation, and structure. Biopolymers 1965, 3, 135-153.
[48] Riemer, S. C., Bloomfield, V. A., Effect of Mg++ and polyamines on proflavine binding to T2 DNA. Biopolymers 1979, 18, 1695-1708.
[49] Ortona, O., Costantino, L., Volpe, C. D., Vitagliano, V., Stacking equilibria of proflavine in various solutions. Journal of Molecular Liquids 1990, 45, 201-211.
[50] Quadrifoglio, F., Crescenzi, V., Giancotti, V., Calorimetry of DNA-dye interactions in aqueous solution : I. Proflavine and ethidium bromide. Biophys Chem 1974, 1, 319-324.
[51] Bloomfield, V. A., Crothers, D. M., Tinoco, I., Nucleic acids: structures, properties, and functions, University Science Books, Sausalito 2000.
[52] Jain, S. S., Anet, F. A., Stahle, C. J., Hud, N. V., Enzymatic behavior by intercalating molecules in a template-directed ligation reaction. Angew Chem Int Ed Engl 2004, 43, 2004-2008.
[53] Remeta, D. P., Mudd, C. P., Berger, R. L., Breslauer, K. J., Thermodynamic characterization of daunomycin-DNA interactions: comparison of complete binding profiles for a series of DNA host duplexes. Biochemistry 1993, 32, 5064-5073.
[54] Quigley, G. J., Wang, A. H., Ughetto, G., van der Marel, G., et al., Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG). Proc Natl Acad Sci U S A 1980, 77, 7204-7208.
[55] Neidle, S., Taylor, G. L., Nucleic acid binding drugs. Some conformational properties of the anti-cancer drug daunomycin and several of its derivatives: implications for DNA-binding. FEBS Lett 1979, 107, 348-354.
[56] Gray, P. J., Phillips, D. R., Wedd, A. G., Photosensitized degradation of DNA by daunomycin. Photochem Photobiol 1982, 36, 49-57.
[57] Grimmond, H. E., Beerman, T., Alteration of chromatin structure induced by the binding of adriamycin, daunorubicin and ethidium bromide. Biochem Pharmacol 1982, 31, 3379-3386.
[58] Lown, J. W., Sim, S. K., Majumdar, K. C., Chang, R. Y., Strand scission of DNA by bound adriamycin and daunorubicin in the presence of reducing agents. Biochem Biophys Res Commun 1977, 76, 705-710.
[59] Someya, A., Tanaka, N., DNA strand scission induced by adriamycin and aclacinomycin A. J Antibiot (Tokyo) 1979, 32, 839-845.
[60] Center, M. S., Induction of single-strand regions in nuclear DNA by adriamycin. Biochem Biophys Res Commun 1979, 89, 1231-1238.
[61] Bodley, A., Liu, L. F., Israel, M., Seshadri, R., et al., DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Res 1989, 49, 5969-5978.
[62] Nafziger, J., Auclair, C., Florent, J. C., Guillosson, J. J., Monneret, C., Pharmacological and physicochemical properties of a new anthracycline with potent antileukemic activity. Leuk Res 1991, 15, 709-713.
[63] Chaires, J. B., Dattagupta, N., Crothers, D. M., Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on interaction of daunomycin with deoxyribonucleic acid. Biochemistry 1982, 21, 3933-3940.
[64] Chaires, J. B., Fox, K. R., Herrera, J. E., Britt, M., Waring, M. J., Site and sequence specificity of the daunomycin-DNA interaction. Biochemistry 1987, 26, 8227-8236.
[65] Walter, A., Continuous mixing experiments allow to determine the size of binding sites for anthracyclines complexed to DNA. Biomed Biochim Acta 1985, 44, 1321-1327.
[66] Barthelemy-Clavey, V., Maurizot, J. C., Sicard, P. J., [Spectrophotometric study of the DNA-daunorubicin complex]. Biochimie 1973, 55, 859-868.
[67] Molinier-Jumel, C., Malfoy, B., Reynaud, J. A., Aubel-Sadron, G., Electrochemical study of DNA-anthracyclines interaction. Biochem Biophys Res Commun 1978, 84, 441-449.
[68] Zunino, F., Di Marco, A., Zaccara, A., Gambetta, R. A., The interaction of daunorubicin and doxorubicin with DNA and chromatin. Biochim Biophys Acta 1980, 607, 206-214.
[69] Zunino, F., Gambetta, R., Di Marco, A., Zaccara, A., Interaction of daunomycin and its derivatives with DNA. Biochim Biophys Acta 1972, 277, 489-498.
[70] Chaires, J. B., Thermodynamics of the daunomycin-DNA interaction: ionic strength dependence of the enthalpy and entropy. Biopolymers 1985, 24, 403-419.
[71] Chaires, J. B., Equilibrium studies on the interaction of daunomycin with deoxypolynucleotides. Biochemistry 1983, 22, 4204-4211.
[72] Graves, D. E., Krugh, T. R., Adriamycin and daunorubicin bind in a cooperative manner to deoxyribonucleic acid. Biochemistry 1983, 22, 3941-3947.
[73] Lin, P. H., Kao, Y. H., Chang, Y., Cheng, Y. C., et al., Daunomycin interaction with DNA: microcalorimetric studies of the thermodynamics and binding mechanism. Biotechnol J 2010, 5, 1069-1077.
[74] Phillips, D. R., DiMarco, A., Zunino, F., The interaction of daunomycin with polydeoxynucleotides. Eur J Biochem 1978, 85, 487-492.
[75] Xodo, L. E., Manzini, G., Ruggiero, J., Quadrifoglio, F., On the interaction of daunomycin with synthetic alternating DNAs: sequence specificity and polyelectrolyte effects on the intercalation equilibrium. Biopolymers 1988, 27, 1839-1857.
[76] Chaires, J. B., Herrera, J. E., Waring, M. J., Preferential binding of daunomycin to 5'ATCG and 5'ATGC sequences revealed by footprinting titration experiments. Biochemistry 1990, 29, 6145-6153.
[77] Minotti, G., Sarvazyan, N., The anthracyclines: when good things go bad. Cardiovasc Toxicol 2007, 7, 53-55.
[78] Duncan, R., Kopeckova-Rejmanova, P., Strohalm, J., Hume, I., et al., Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. I. Evaluation of daunomycin and puromycin conjugates in vitro. Br J Cancer 1987, 55, 165-174.
[79] Hudecz, F., Clegg, J. A., Kajtar, J., Embleton, M. J., et al., Synthesis, conformation, biodistribution, and in vitro cytotoxicity of daunomycin-branched polypeptide conjugates. Bioconjug Chem 1992, 3, 49-57.
[80] Miklan, Z., Orban, E., Csik, G., Schlosser, G., et al., New daunomycin-oligoarginine conjugates: synthesis, characterization, and effect on human leukemia and human hepatoma cells. Biopolymers 2009, 92, 489-501.
[81] Szabo, R., Banoczi, Z., Mezo, G., Lang, O., et al., Daunomycin-polypeptide conjugates with antitumor activity. Biochim Biophys Acta 2010, 1798, 2209-2216.
[82] Sprigg, L., Li, A., Choy, F. Y., Ausio, J., Interaction of daunomycin with acetylated chromatin. J Med Chem 2010, 53, 6457-6465.
[83] Yang, C., Choy, E., Hornicek, F. J., Wood, K. B., et al., Histone deacetylase inhibitor (HDACI) PCI-24781 potentiates cytotoxic effects of doxorubicin in bone sarcoma cells. Cancer Chemother Pharmacol.
[84] Gilbert, W., The {RNA} world. Nature 1986, 319.
[85] Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., et al., Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 1982, 31, 147-157.
[86] Joyce, G. F., Nonenzymatic template-directed synthesis of informational macromolecules. Cold Spring Harb Symp Quant Biol 1987, 52, 41-51.
[87] Joyce, G. F., RNA evolution and the origins of life. Nature 1989, 338, 217-224.
[88] Doudna, J. A., Couture, S., Szostak, J. W., A multisubunit ribozyme that is a catalyst of and template for complementary strand RNA synthesis. Science 1991, 251, 1605-1608.
[89] Doudna, J. A., Szostak, J. W., RNA-catalysed synthesis of complementary-strand RNA. Nature 1989, 339, 519-522.
[90] Uhlenbeck, O. C., A small catalytic oligoribonucleotide. Nature 1987, 328, 596-600.
[91] David, P. B., 5 Re-creating an RNA Replicase. CSH Monograph Archive: The RNA World, 2nd Ed. 1999, 37, 143-162.
[92] Barrick, J. E., Corbino, K. A., Winkler, W. C., Nahvi, A., et al., New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci U S A 2004, 101, 6421-6426.
[93] Mandal, M., Breaker, R. R., Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 2004, 11, 29-35.
[94] Mandal, M., Lee, M., Barrick, J. E., Weinberg, Z., et al., A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 2004, 306, 275-279.
[95] Nahvi, A., Sudarsan, N., Ebert, M. S., Zou, X., et al., Genetic control by a metabolite binding mRNA. Chem Biol 2002, 9, 1043.
[96] Winkler, W., Nahvi, A., Breaker, R. R., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002, 419, 952-956.
[97] Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A., Breaker, R. R., Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004, 428, 281-286.
[98] Winkler, W. C., Nahvi, A., Sudarsan, N., Barrick, J. E., Breaker, R. R., An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 2003, 10, 701-707.
[99] Breaker, R. R., Emilsson, G. M., Lazarev, D., Nakamura, S., et al., A common speed limit for RNA-cleaving ribozymes and deoxyribozymes. RNA 2003, 9, 949-957.
[100] Carmi, N., Shultz, L. A., Breaker, R. R., In vitro selection of self-cleaving DNAs. Chem Biol 1996, 3, 1039-1046.
[101] Li, Y., Breaker, R. R., Phosphorylating DNA with DNA. Proc Natl Acad Sci U S A 1999, 96, 2746-2751.
[102] Li, Y., Breaker, R. R., Deoxyribozymes: new players in the ancient game of biocatalysis. Curr Opin Struct Biol 1999, 9, 315-323.
[103] Li, Y., Breaker, R. R., In vitro selection of kinase and ligase deoxyribozymes. Methods 2001, 23, 179-190.
[104] Flynn-Charlebois, A., Wang, Y., Prior, T. K., Rashid, I., et al., Deoxyribozymes with 2'-5' RNA ligase activity. J Am Chem Soc 2003, 125, 2444-2454.
[105] Purtha, W. E., Coppins, R. L., Smalley, M. K., Silverman, S. K., General deoxyribozyme-catalyzed synthesis of native 3'-5' RNA linkages. J Am Chem Soc 2005, 127, 13124-13125.
[106] Ellington, A. D., Szostak, J. W., In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818-822.
[107] Robertson, D. L., Joyce, G. F., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990, 344, 467-468.
[108] Tuerk, C., Gold, L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505-510.
[109] Bunka, D. H., Stockley, P. G., Aptamers come of age - at last. Nat Rev Microbiol 2006, 4, 588-596.
[110] Breaker, R. R., Natural and engineered nucleic acids as tools to explore biology. Nature 2004, 432, 838-845.
[111] Cox, J. C., Hayhurst, A., Hesselberth, J., Bayer, T. S., et al., Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res 2002, 30, e108.
[112] Cox, J. C., Rudolph, P., Ellington, A. D., Automated RNA selection. Biotechnol Prog 1998, 14, 845-850.
[113] Osborne, S. E., Ellington, A. D., Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chem Rev 1997, 97, 349-370.
[114] Gopinath, S. C., Misono, T. S., Kawasaki, K., Mizuno, T., et al., An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J Gen Virol 2006, 87, 479-487.
[115] Nishikawa, F., Funaji, K., Fukuda, K., Nishikawa, S., In vitro selection of RNA aptamers against the HCV NS3 helicase domain. Oligonucleotides 2004, 14, 114-129.
[116] Sekiya, S., Noda, K., Nishikawa, F., Yokoyama, T., et al., Characterization and application of a novel RNA aptamer against the mouse prion protein. J Biochem 2006, 139, 383-390.
[117] Ciesiolka, J., Gorski, J., Yarus, M., Selection of an RNA domain that binds Zn2+. RNA 1995, 1, 538-550.
[118] Nieuwlandt, D., Wecker, M., Gold, L., In vitro selection of RNA ligands to substance P. Biochemistry 1995, 34, 5651-5659.
[119] Khati, M., Schuman, M., Ibrahim, J., Sattentau, Q., et al., Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2'F-RNA aptamers. J Virol 2003, 77, 12692-12698.
[120] Misono, T. S., Kumar, P. K., Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem 2005, 342, 312-317.
[121] Pileur, F., Andreola, M. L., Dausse, E., Michel, J., et al., Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Res 2003, 31, 5776-5788.
[122] Berezovski, M. V., Musheev, M. U., Drabovich, A. P., Jitkova, J. V., Krylov, S. N., Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nat Protoc 2006, 1, 1359-1369.
[123] Drabovich, A., Berezovski, M., Krylov, S. N., Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). J Am Chem Soc 2005, 127, 11224-11225.
[124] Mendonsa, S. D., Bowser, M. T., In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal Chem 2004, 76, 5387-5392.
[125] Mendonsa, S. D., Bowser, M. T., In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc 2005, 127, 9382-9383.
[126] Blank, M., Weinschenk, T., Priemer, M., Schluesener, H., Systematic Evolution of a DNA Aptamer Binding to Rat Brain Tumor Microvessels. Journal of Biological Chemistry 2001, 276, 16464-16468.
[127] Yang, X., Li, X., Prow, T. W., Reece, L. M., et al., Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Res 2003, 31, e54.
[128] Eulberg, D., Buchner, K., Maasch, C., Klussmann, S., Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 2005, 33, e45.
[129] Gopinath, S. C., Methods developed for SELEX. Anal Bioanal Chem 2007, 387, 171-182.
[130] Lee, J. F., Hesselberth, J. R., Meyers, L. A., Ellington, A. D., Aptamer database. Nucleic Acids Res 2004, 32, D95-100.
[131] Brockstedt, U., Uzarowska, A., Montpetit, A., Pfau, W., Labuda, D., In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines. Biochem Biophys Res Commun 2004, 313, 1004-1008.
[132] Geiger, A., Burgstaller, P., von der Eltz, H., Roeder, A., Famulok, M., RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 1996, 24, 1029-1036.
[133] Huizenga, D. E., Szostak, J. W., A DNA aptamer that binds adenosine and ATP. Biochemistry 1995, 34, 656-665.
[134] Kawakami, J., Imanaka, H., Yokota, Y., Sugimoto, N., In vitro selection of aptamers that act with Zn2+. J Inorg Biochem 2000, 82, 197-206.
[135] Koizumi, M., Breaker, R. R., Molecular recognition of cAMP by an RNA aptamer. Biochemistry 2000, 39, 8983-8992.
[136] Vianini, E., Palumbo, M., Gatto, B., In vitro selection of DNA aptamers that bind L-tyrosinamide. Bioorg Med Chem 2001, 9, 2543-2548.
[137] Zimmermann, G. R., Shields, T. P., Jenison, R. D., Wick, C. L., Pardi, A., A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA. Biochemistry 1998, 37, 9186-9192.
[138] Plummer, K. A., Carothers, J. M., Yoshimura, M., Szostak, J. W., Verdine, G. L., In vitro selection of RNA aptamers against a composite small molecule-protein surface. Nucleic Acids Res 2005, 33, 5602-5610.
[139] Pendergrast, P. S., Marsh, H. N., Grate, D., Healy, J. M., Stanton, M., Nucleic acid aptamers for target validation and therapeutic applications. J Biomol Tech 2005, 16, 224-234.
[140] Michaud, M., Jourdan, E., Ravelet, C., Villet, A., et al., Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers. Anal Chem 2004, 76, 1015-1020.
[141] Daniels, D. A., Chen, H., Hicke, B. J., Swiderek, K. M., Gold, L., A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A 2003, 100, 15416-15421.
[142] Hicke, B. J., Marion, C., Chang, Y. F., Gould, T., et al., Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 2001, 276, 48644-48654.
[143] Nimjee, S. M., Rusconi, C. P., Sullenger, B. A., Aptamers: an emerging class of therapeutics. Annu Rev Med 2005, 56, 555-583.
[144] Breaker, R. R., Tech.Sight. Molecular biology. Making catalytic DNAs. Science 2000, 290, 2095-2096.
[145] Eaton, B. E., Pieken, W. A., Ribonucleosides and RNA. Annu Rev Biochem 1995, 64, 837-863.
[146] Floege, J., Ostendorf, T., Janssen, U., Burg, M., et al., Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am J Pathol 1999, 154, 169-179.
[147] Kopylov, A. M., Spiridonova, V. A., ChemInform Abstract: Combinatorial Chemistry of Nucleic Acids: SELEX. ChemInform 2001, 32, no-no.
[148] Kusser, W., Chemically modified nucleic acid aptamers for in vitro selections: evolving evolution. J Biotechnol 2000, 74, 27-38.
[149] Lee, J. F., Stovall, G. M., Ellington, A. D., Aptamer therapeutics advance. Curr Opin Chem Biol 2006, 10, 282-289.
[150] Nelson, J. S., Giver, L., Ellington, A. D., Letsinger, R. L., Incorporation of a non-nucleotide bridge into hairpin oligonucleotides capable of high-affinity binding to the Rev protein of HIV-1. Biochemistry 1996, 35, 5339-5344.
[151] Stoltenburg, R., Reinemann, C., Strehlitz, B., SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007, 24, 381-403.
[152] Cochrane, J. C., Strobel, S. A., Riboswitch effectors as protein enzyme cofactors. RNA 2008, 14, 993-1002.
[153] Corbino, K. A., Barrick, J. E., Lim, J., Welz, R., et al., Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol 2005, 6, R70.
[154] Batey, R. T., Structures of regulatory elements in mRNAs. Curr Opin Struct Biol 2006, 16, 299-306.
[155] Nudler, E., Mironov, A. S., The riboswitch control of bacterial metabolism. Trends Biochem Sci 2004, 29, 11-17.
[156] Tucker, B. J., Breaker, R. R., Riboswitches as versatile gene control elements. Curr Opin Struct Biol 2005, 15, 342-348.
[157] Vitreschak, A. G., Rodionov, D. A., Mironov, A. A., Gelfand, M. S., Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 2004, 20, 44-50.
[158] Sudarsan, N., Barrick, J. E., Breaker, R. R., Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 2003, 9, 644-647.
[159] Gilbert, S. D., Stoddard, C. D., Wise, S. J., Batey, R. T., Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J Mol Biol 2006, 359, 754-768.
[160] Mironov, A. S., Gusarov, I., Rafikov, R., Lopez, L. E., et al., Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 2002, 111, 747-756.
[161] Winkler, W. C., Cohen-Chalamish, S., Breaker, R. R., An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A 2002, 99, 15908-15913.
[162] Grundy, F. J., Henkin, T. M., The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol Microbiol 1998, 30, 737-749.
[163] Miranda-Rios, J., Navarro, M., Soberon, M., A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc Natl Acad Sci U S A 2001, 98, 9736-9741.
[164] Gelfand, M. S., Mironov, A. A., Jomantas, J., Kozlov, Y. I., Perumov, D. A., A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet 1999, 15, 439-442.
[165] Franklund, C. V., Kadner, R. J., Multiple transcribed elements control expression of the Escherichia coli btuB gene. J Bacteriol 1997, 179, 4039-4042.
[166] Weinberg, Z., Barrick, J. E., Yao, Z., Roth, A., et al., Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 2007, 35, 4809-4819.
[167] Weinberg, Z., Wang, J. X., Bogue, J., Yang, J., et al., Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 2010, 11, R31.
[168] Kim, J. N., Breaker, R. R., Purine sensing by riboswitches. Biol Cell 2008, 100, 1-11.
[169] Lee, J. O., So, H. M., Jeon, E. K., Chang, H., et al., Aptamers as molecular recognition elements for electrical nanobiosensors. Anal Bioanal Chem 2008, 390, 1023-1032.
[170] Liss, M., Petersen, B., Wolf, H., Prohaska, E., An aptamer-based quartz crystal protein biosensor. Anal Chem 2002, 74, 4488-4495.
[171] Baker, B. R., Lai, R. Y., Wood, M. S., Doctor, E. H., et al., An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 2006, 128, 3138-3139.
[172] Bang, G. S., Cho, S., Kim, B. G., A novel electrochemical detection method for aptamer biosensors. Biosens Bioelectron 2005, 21, 863-870.
[173] Ikebukuro, K., Kiyohara, C., Sode, K., Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens Bioelectron 2005, 20, 2168-2172.
[174] Lai, R. Y., Plaxco, K. W., Heeger, A. J., Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem 2007, 79, 229-233.
[175] Xiao, Y., Piorek, B. D., Plaxco, K. W., Heeger, A. J., A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 2005, 127, 17990-17991.
[176] Savran, C. A., Knudsen, S. M., Ellington, A. D., Manalis, S. R., Micromechanical detection of proteins using aptamer-based receptor molecules. Anal Chem 2004, 76, 3194-3198.
[177] Maehashi, K., Katsura, T., Kerman, K., Takamura, Y., et al., Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 2007, 79, 782-787.
[178] Nutiu, R., Li, Y., Structure-switching signaling aptamers. J Am Chem Soc 2003, 125, 4771-4778.
[179] Nutiu, R., Li, Y., Aptamers with fluorescence-signaling properties. Methods 2005, 37, 16-25.
[180] Yang, C. J., Jockusch, S., Vicens, M., Turro, N. J., Tan, W., Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci U S A 2005, 102, 17278-17283.
[181] Navani, N. K., Li, Y., Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 2006, 10, 272-281.
[182] Ravelet, C., Grosset, C., Peyrin, E., Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers. J Chromatogr A 2006, 1117, 1-10.
[183] Connor, A. C., McGown, L. B., Aptamer stationary phase for protein capture in affinity capillary chromatography. J Chromatogr A 2006, 1111, 115-119.
[184] Vo, T. U., McGown, L. B., Effects of G-quartet DNA stationary phase destabilization on fibrinogen peptide resolution in capillary electrochromatography. Electrophoresis 2006, 27, 749-756.
[185] Michaud, M., Jourdan, E., Villet, A., Ravel, A., et al., A DNA aptamer as a new target-specific chiral selector for HPLC. J Am Chem Soc 2003, 125, 8672-8679.
[186] Ruta, J., Ravelet, C., Grosset, C., Fize, J., et al., Enantiomeric separation using an l-RNA aptamer as chiral additive in partial-filling capillary electrophoresis. Anal Chem 2006, 78, 3032-3039.
[187] Pich, E. M., Epping-Jordan, M. P., Transgenic mice in drug dependence research. Ann Med 1998, 30, 390-396.
[188] Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494-498.
[189] Hannon, G. J., RNA interference. Nature 2002, 418, 244-251.
[190] Blank, M., Blind, M., Aptamers as tools for target validation. Curr Opin Chem Biol 2005, 9, 336-342.
[191] Jellinek, D., Green, L. S., Bell, C., Lynott, C. K., et al., Potent 2'-amino-2'-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 1995, 34, 11363-11372.
[192] Purschke, W. G., Eulberg, D., Buchner, K., Vonhoff, S., Klussmann, S., An L-RNA-based aquaretic agent that inhibits vasopressin in vivo. Proc Natl Acad Sci U S A 2006, 103, 5173-5178.
[193] Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A., Furste, J. P., Mirror-image RNA that binds D-adenosine. Nat Biotechnol 1996, 14, 1112-1115.
[194] Willis, M. C., Collins, B. D., Zhang, T., Green, L. S., et al., Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug Chem 1998, 9, 573-582.
[195] Chang, S.-S., Shih, C.-W., Chen, C.-D., Lai, W.-C., Wang, C. R. C., The Shape Transition of Gold Nanorods. Langmuir 1998, 15, 701-709.
[196] Huang, C. C., Huang, Y. F., Cao, Z., Tan, W., Chang, H. T., Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 2005, 77, 5735-5741.
[197] Pavlov, V., Xiao, Y., Shlyahovsky, B., Willner, I., Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 2004, 126, 11768-11769.
[198] Polsky, R., Gill, R., Kaganovsky, L., Willner, I., Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Anal Chem 2006, 78, 2268-2271.
[199] Levy, M., Cater, S. F., Ellington, A. D., Quantum-dot aptamer beacons for the detection of proteins. Chembiochem 2005, 6, 2163-2166.
[200] So, H. M., Park, D. W., Jeon, E. K., Kim, Y. H., et al., Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 2008, 4, 197-201.
[201] Liu, J., Lu, Y., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angewandte Chemie International Edition 2006, 45, 90-94.
[202] Liu, J., Mazumdar, D., Lu, Y., A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem Int Ed Engl 2006, 45, 7955-7959.
[203] Tu, S., Teng, Y. C., Yuan, C., Wu, Y. T., et al., The ARID domain of the H3K4 demethylase RBP2 binds to a DNA CCGCCC motif. Nat Struct Mol Biol 2008, 15, 419-421.
[204] Kawakami, S., Hashida, M., Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab Pharmacokinet 2007, 22, 142-151.
[205] Meade, B. R., Dowdy, S. F., Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev 2007, 59, 134-140.
[206] Convery, M. A., Rowsell, S., Stonehouse, N. J., Ellington, A. D., et al., Crystal structure of an RNA aptamer-protein complex at 2.8 A resolution. Nat Struct Biol 1998, 5, 133-139.
[207] Rowsell, S., Stonehouse, N. J., Convery, M. A., Adams, C. J., et al., Crystal structures of a series of RNA aptamers complexed to the same protein target. Nat Struct Biol 1998, 5, 970-975.
[208] Hermann, T., Patel, D. J., Adaptive recognition by nucleic acid aptamers. Science 2000, 287, 820-825.
[209] Desjardins, G., Bonneau, E., Girard, N., Boisbouvier, J., Legault, P., NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site. Nucleic Acids Research 2011.
[210] Noeske, J., Buck, J., Furtig, B., Nasiri, H. R., et al., Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Nucleic Acids Res 2007, 35, 572-583.
[211] Nomura, Y., Sugiyama, S., Sakamoto, T., Miyakawa, S., et al., Conformational plasticity of RNA for target recognition as revealed by the 2.15 A crystal structure of a human IgG-aptamer complex. Nucleic Acids Res 2010, 38, 7822-7829.
[212] Carothers, J. M., Oestreich, S. C., Szostak, J. W., Aptamers selected for higher-affinity binding are not more specific for the target ligand. J Am Chem Soc 2006, 128, 7929-7937.
[213] Bishop, G. R., Ren, J., Polander, B. C., Jeanfreau, B. D., et al., Energetic basis of molecular recognition in a DNA aptamer. Biophys Chem 2007, 126, 165-175.
[214] Famulok, M., Molecular Recognition of Amino Acids by RNA-Aptamers: An L-Citrulline Binding RNA Motif and Its Evolution into an L-Arginine Binder. J Am Chem Soc 1994, 116, 1698-1706.
[215] Huang, Z., Szostak, J. W., Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer. RNA 2003, 9, 1456-1463.
[216] Cowperthwaite, M. C., Ellington, A. D., Bioinformatic analysis of the contribution of primer sequences to aptamer structures. J Mol Evol 2008, 67, 95-102.
[217] Mannironi, C., Scerch, C., Fruscoloni, P., Tocchini-Valentini, G. P., Molecular recognition of amino acids by RNA aptamers: the evolution into an L-tyrosine binder of a dopamine-binding RNA motif. RNA 2000, 6, 520-527.
[218] Sayer, N. M., Cubin, M., Rhie, A., Bullock, M., et al., Structural determinants of conformationally selective, prion-binding aptamers. J Biol Chem 2004, 279, 13102-13109.
[219] Dey, A. K., Griffiths, C., Lea, S. M., James, W., Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1. RNA 2005, 11, 873-884.
[220] Huang, Z., Wang, X., Gao, G., Analyses of SELEX-derived ZAP-binding RNA aptamers suggest that the binding specificity is determined by both structure and sequence of the RNA. Protein Cell 2010, 1, 752-759.
[221] Anderson, P. C., Mecozzi, S., Identification of a 14mer RNA that recognizes and binds flavin mononucleotide with high affinity. Nucleic Acids Res 2005, 33, 6992-6999.
[222] Muller, M., Weigand, J. E., Weichenrieder, O., Suess, B., Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Res 2006, 34, 2607-2617.
[223] Ha, J. H., Capp, M. W., Hohenwalter, M. D., Baskerville, M., Record, M. T., Jr., Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to DNA. Possible thermodynamic origins of the "glutamate effect" on protein-DNA interactions. J Mol Biol 1992, 228, 252-264.
[224] Andre, C., Xicluna, A., Guillaume, Y. C., Aptamer-oligonucleotide binding studied by capillary electrophoresis: cation effect and separation efficiency. Electrophoresis 2005, 26, 3247-3255.
[225] Kulshina, N., Edwards, T. E., Ferre-D'Amare, A. R., Thermodynamic analysis of ligand binding and ligand binding-induced tertiary structure formation by the thiamine pyrophosphate riboswitch. RNA 2010, 16, 186-196.
[226] Record, M. T., Jr., Anderson, C. F., Lohman, T. M., Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys 1978, 11, 103-178.
[227] Suryawanshi, H., Sabharwal, H., Maiti, S., Thermodynamics of peptide-RNA recognition: the binding of a Tat peptide to TAR RNA. J Phys Chem B 2010, 114, 11155-11163.
[228] Neves, M. A., Reinstein, O., Saad, M., Johnson, P. E., Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study. Biophys Chem, 153, 9-16.
[229] Buck, M., Bouguet-Bonnet, S., Pastor, R. W., MacKerell, A. D., Jr., Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys J 2006, 90, L36-38.
[230] Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., et al., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J Am Chem Soc 1995, 117, 5179-5197.
[231] Lin, F., Wang, R., Systematic Derivation of AMBER Force Field Parameters Applicable to Zinc-Containing Systems. Journal of Chemical Theory and Computation 2010, 6, 1852-1870.
[232] Crow, R. T., Crothers, D. M., Inhibition of topoisomerase I by anthracycline antibiotics: evidence for general inhibition of topoisomerase I by DNA-binding agents. J Med Chem 1994, 37, 3191-3194.
[233] Denny, W. A., Baguley, B. C., Dual topoisomerase I/II inhibitors in cancer therapy. Curr Top Med Chem 2003, 3, 339-353.
[234] Ferguson, L. R., Denny, W. A., Genotoxicity of non-covalent interactions: DNA intercalators. Mutat Res 2007, 623, 14-23.
[235] Snyder, R. D., Hendry, L. B., Toward a greater appreciation of noncovalent chemical/DNA interactions: application of biological and computational approaches. Environ Mol Mutagen 2005, 45, 100-105.
[236] Zou, Y., Ling, Y. H., Reddy, S., Priebe, W., Perez-Soler, R., Effect of vesicle size and lipid composition on the in vivo tumor selectivity and toxicity of the non-cross-resistant anthracycline annamycin incorporated in liposomes. Int J Cancer 1995, 61, 666-671.
[237] Dignam, J. D., Qu, X., Ren, J., Chaires, J. B., Daunomycin binding to detergent micelles: a model system for evaluating the hydrophobic contribution to drug-DNA interactions. J Phys Chem B 2007, 111, 11576-11584.
[238] Frederick, C. A., Williams, L. D., Ughetto, G., van der Marel, G. A., et al., Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 1990, 29, 2538-2549.
[239] Bouma, J., Beijnen, J. H., Bult, A., Underberg, W. J., Anthracycline antitumour agents. A review of physicochemical, analytical and stability properties. Pharm Weekbl Sci 1986, 8, 109-133.
[240] Remeta, D. P., Mudd, C. P., Berger, R. L., Breslauer, K. J., Thermodynamic characterization of daunomycin-DNA interactions: microcalorimetric measurements of daunomycin-DNA binding enthalpies. Biochemistry 1991, 30, 9799-9809.
[241] Record, M. T., Jr., Ha, J. H., Fisher, M. A., Analysis of equilibrium and kinetic measurements to determine thermodynamic origins of stability and specificity and mechanism of formation of site-specific complexes between proteins and helical DNA. Methods Enzymol 1991, 208, 291-343.
[242] Chaires, J. B., Satyanarayana, S., Suh, D., Fokt, I., et al., Parsing the free energy of anthracycline antibiotic binding to DNA. Biochemistry 1996, 35, 2047-2053.
[243] Ren, J., Jenkins, T. C., Chaires, J. B., Energetics of DNA intercalation reactions. Biochemistry 2000, 39, 8439-8447.
[244] Lin, F. Y., Chen, W. Y., Hearn, M. T., Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: effects of salts, hydrophobicity of the sorbent, and structure of the protein. Anal Chem 2001, 73, 3875-3883.
[245] Lin, P. H., Yen, S. L., Lin, M. S., Chang, Y., et al., Microcalorimetrics studies of the thermodynamics and binding mechanism between L-tyrosinamide and aptamer. J Phys Chem B 2008, 112, 6665-6673.
[246] Seelig, J., Ganz, P., Nonclassical hydrophobic effect in membrane binding equilibria. Biochemistry 1991, 30, 9354-9359.
[247] Haq, I., Thermodynamics of drug-DNA interactions. Arch Biochem Biophys 2002, 403, 1-15.
[248] Luedtke, N. W., Carmichael, P., Tor, Y., Cellular uptake of aminoglycosides, guanidinoglycosides, and poly-arginine. J Am Chem Soc 2003, 125, 12374-12375.
[249] Nguyen, B., Stanek, J., Wilson, W. D., Binding-linked protonation of a DNA minor-groove agent. Biophys J 2006, 90, 1319-1328.
[250] Barbieri, C. M., Pilch, D. S., Complete thermodynamic characterization of the multiple protonation equilibria of the aminoglycoside antibiotic paromomycin: a calorimetric and natural abundance 15N NMR study. Biophys J 2006, 90, 1338-1349.
[251] Leavitt, S., Freire, E., Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 2001, 11, 560-566.
[252] Fukada, H., Takahashi, K., Sturtevant, J. M., Differential scanning calorimetric study of the thermal unfolding of Taka-amylase A from Aspergillus oryzae. Biochemistry 1987, 26, 4063-4068.
[253] Fukada, H., Takahashi, K., Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins 1998, 33, 159-166.
[254] Gilli, P., Ferretti, V., Gilli, G., Enthalpy-Entropy Compensation in Drug-Receptor Binding. J. Phys. Chem. 1994, 98, 1515-1518.
[255] Jensen, W. A., Armstrong, J. M., De Giorgio, J., Hearn, M. T., Thermodynamic analysis of the stabilisation of pig heart mitochondrial malate dehydrogenase and maize leaf phosphoenolpyruvate carboxylase by different salts, amino acids and polyols. Biochim Biophys Acta 1997, 1338, 186-198.
[256] Liu, L., Yang, C., Guo, Q. X., A study on the enthalpy-entropy compensation in protein unfolding. Biophys Chem 2000, 84, 239-251.
[257] Cornish-Bowden, A., Enthalpy-entropy compensation: a phantom phenomenon. J Biosci 2002, 27, 121-126.
[258] Starikov, E. B., Norden, B., Enthalpy-entropy compensation: a phantom or something useful? J Phys Chem B 2007, 111, 14431-14435.
[259] Krug, R. R., Hunter, W. G., Grieger, R. A., Statistical interpretation of enthalpy-entropy compensation. Nature 1976, 361, 566-567.
[260] Krug, R. R., Hunter, W. G., Grieger, R. A., Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data. J. Phys. Chem. 1976, 80, 2335-2341.
[261] Krug, R. R., Hunter, W. G., Grieger, R. A., Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem. 1976, 80, 2341-2351.
[262] Yu, H., Ren, J., Chaires, J. B., Qu, X., Hydration of drug-DNA complexes: greater water uptake for adriamycin compared to daunomycin. J Med Chem 2008, 51, 5909-5911.
[263] Leung, D. H., Bergman, R. G., Raymond, K. N., Enthalpy-entropy compensation reveals solvent reorganization as a driving force for supramolecular encapsulation in water. J Am Chem Soc 2008, 130, 2798-2805.
[264] Brodsky, A. S., Williamson, J. R., Solution structure of the HIV-2 TAR-argininamide complex. J Mol Biol 1997, 267, 624-639.
[265] Montange, R. K., Batey, R. T., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 2006, 441, 1172-1175.
[266] Sui, G., Soohoo, C., Affar el, B., Gay, F., et al., A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 2002, 99, 5515-5520.
[267] Bozza, M., Sheardy, R. D., Dilone, E., Scypinski, S., Galazka, M., Characterization of the secondary structure and stability of an RNA aptamer that binds vascular endothelial growth factor. Biochemistry 2006, 45, 7639-7643.
[268] Pilch, D. S., Kaul, M., Barbieri, C. M., Kerrigan, J. E., Thermodynamics of aminoglycoside-rRNA recognition. Biopolymers 2003, 70, 58-79.
[269] Kaul, M., Barbieri, C. M., Kerrigan, J. E., Pilch, D. S., Coupling of drug protonation to the specific binding of aminoglycosides to the A site of 16 S rRNA: elucidation of the number of drug amino groups involved and their identities. J Mol Biol 2003, 326, 1373-1387.
[270] Kankia, B. I., Marky, L. A., Folding of the thrombin aptamer into a G-quadruplex with Sr(2+): stability, heat, and hydration. J Am Chem Soc 2001, 123, 10799-10804.
[271] Eble, J. E., Grob, R. L., Antle, P. E., Snyder, L. R., Simplified description of high-performance liquid chromatographic separation under overload conditions, based on the Craig distribution model: II. Effect of isotherm type, and experimental verification of computer simulations for a single band. J Chromatogr A 1987, 384, 45-79.
[272] Shuman, C. F., Hamalainen, M. D., Danielson, U. H., Kinetic and thermodynamic characterization of HIV-1 protease inhibitors. J Mol Recognit 2004, 17, 106-119.
[273] W. Curtis Johnson, J., Determination of the conformation of nucleic acid by electronic CD, in: Fasman, G. D. (Ed.), Circular Dichroism and the Conformational Analysis of Biomolecules, Plenum Press, New York 1996, p. 433.
[274] Merino, E. J., Weeks, K. M., Facile conversion of aptamers into sensors using a 2'-ribose-linked fluorophore. J Am Chem Soc 2005, 127, 12766-12767.
[275] Leulliot, N., Varani, G., Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 2001, 40, 7947-7956.
[276] Williamson, J. R., Induced fit in RNA-protein recognition. Nat Struct Biol 2000, 7, 834-837.
[277] Liggins, J. R., Privalov, P. L., Energetics of the specific binding interaction of the first three zinc fingers of the transcription factor TFIIIA with its cognate DNA sequence. Proteins 2000, Suppl 4, 50-62.
[278] Privalov, P. L., Jelesarov, I., Read, C. M., Dragan, A. I., Crane-Robinson, C., The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5. J Mol Biol 1999, 294, 997-1013.
[279] Spolar, R. S., Record, M. T., Jr., Coupling of local folding to site-specific binding of proteins to DNA. Science 1994, 263, 777-784.
[280] Tamura, A., Privalov, P. L., The entropy cost of protein association. J Mol Biol 1997, 273, 1048-1060.
[281] Ha, J. H., Spolar, R. S., Record, M. T., Jr., Role of the hydrophobic effect in stability of site-specific protein-DNA complexes. J Mol Biol 1989, 209, 801-816.
[282] Thomas, J. R., Liu, X., Hergenrother, P. J., Biochemical and thermodynamic characterization of compounds that bind to RNA hairpin loops: toward an understanding of selectivity. Biochemistry 2006, 45, 10928-10938.
[283] Cowan, J. A., Ohyama, T., Wang, D., Natarajan, K., Recognition of a cognate RNA aptamer by neomycin B: quantitative evaluation of hydrogen bonding and electrostatic interactions. Nucleic Acids Res 2000, 28, 2935-2942.
[284] Gold, B., Effect of cationic charge localization on DNA structure. Biopolymers 2002, 65, 173-179.
[285] Manning, G. S., Comments on selected aspects of nucleic acid electrostatics. Biopolymers 2003, 69, 137-143.
[286] McDonald, R. J., Dragan, A. I., Kirk, W. R., Neff, K. L., et al., DNA bending by charged peptides: electrophoretic and spectroscopic analyses. Biochemistry 2007, 46, 2306-2316.
[287] Baumann, C. G., Smith, S. B., Bloomfield, V. A., Bustamante, C., Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A 1997, 94, 6185-6190.
[288] Levitt, M., How many base-pairs per turn does DNA have in solution and in chromatin? Some theoretical calculations. Proc Natl Acad Sci U S A 1978, 75, 640-644.
[289] Hagerman, P. J., Flexibility of DNA. Annu Rev Biophys Biophys Chem 1988, 17, 265-286.
[290] Parker, M. H., Lunney, E. A., Ortwine, D. F., Pavlovsky, A. G., et al., Analysis of the binding of hydroxamic acid and carboxylic acid inhibitors to the stromelysin-1 (matrix metalloproteinase-3) catalytic domain by isothermal titration calorimetry. Biochemistry 1999, 38, 13592-13601.
[291] Petrosian, S. A., Makhatadze, G. I., Contribution of proton linkage to the thermodynamic stability of the major cold-shock protein of Escherichia coli CspA. Protein Sci 2000, 9, 387-394.
[292] Fersht, A. R., Blow, D. M., Fastrez, J., Leaving group specificity in the chymotrypsin-catalyzed hydrolysis of peptides. A stereochemical interpretation. Biochemistry 1973, 12, 2035-2041.
[293] Sundaresan, N., Suresh, C. H., A Base-Sugar??hosphate Three-Layer ONIOM Model for Cation Binding:??Relative Binding Affinities of Alkali Metal Ions for Phosphate Anion in DNA. Journal of Chemical Theory and Computation 2007, 3, 1172-1182.
[294] Deng, Q., Watson, C. J., Kennedy, R. T., Aptamer affinity chromatography for rapid assay of adenosine in microdialysis samples collected in vivo. J Chromatogr A 2003, 1005, 123-130.
[295] Yamauchi, T., Miyoshi, D., Kubodera, T., Nishimura, A., et al., Roles of Mg2+ in TPP-dependent riboswitch. FEBS Lett 2005, 579, 2583-2588.
[296] Hud, N. V., Plavec, J., A unified model for the origin of DNA sequence-directed curvature. Biopolymers 2003, 69, 144-158.
[297] Hud, N. V., Polak, M., DNA-cation interactions: The major and minor grooves are flexible ionophores. Curr Opin Struct Biol 2001, 11, 293-301.
[298] Andre, C., Berthelot, A., Thomassin, M., Guillaume, Y. C., Enantioselective aptameric molecular recognition material: Design of a novel chiral stationary phase for enantioseparation of a series of chiral herbicides by capillary electrochromatography. Electrophoresis 2006, 27, 3254-3262.
[299] Soto, A. M., Kankia, B. I., Dande, P., Gold, B., Marky, L. A., Incorporation of a cationic aminopropyl chain in DNA hairpins: thermodynamics and hydration. Nucleic Acids Res 2001, 29, 3638-3645.
[300] Gubitz, G., Schmid, M. G., Chiral separation by chromatographic and electromigration techniques. A review. Biopharm Drug Dispos 2001, 22, 291-336.
[301] Higuchi, A., Higuchi, Y., Furuta, K., Yoon, B. O., et al., Chiral separation of phenylalanine by ultrafiltration through immobilized DNA membranes. Journal of Membrane Science 2003, 221, 207-218.
[302] Higuchi, A., Yomogita, H., Yoon, B. O., Kojima, T., et al., Optical resolution of amino acid by ultrafiltration using recognition sites of DNA. Journal of Membrane Science 2002, 205, 203-212.
[303] Hamada, H., Shiraki, K., L-argininamide improves the refolding more effectively than L-arginine. J Biotechnol 2007, 130, 153-160.
[304] Brumbt, A., Ravelet, C., Grosset, C., Ravel, A., et al., Chiral stationary phase based on a biostable L-RNA aptamer. Anal Chem 2005, 77, 1993-1998.
[305] Harada, K., Frankel, A. D., Identification of two novel arginine binding DNAs. EMBO J 1995, 14, 5798-5811.
[306] Piatigorskaia, T. L., Evdokimov Iu, M., Varshavskii Ia, M., [Compact form of synthetic polynucleotides. Relationship between secondary structure and circular dichroism spectra]. Mol Biol (Mosk) 1978, 12, 404-412.
[307] Lin, C. H., Patel, D. J., Encapsulating an amino acid in a DNA fold. Nat Struct Biol 1996, 3, 1046-1050.
[308] Gallagher, K., Sharp, K., Electrostatic contributions to heat capacity changes of DNA-ligand binding. Biophys J 1998, 75, 769-776.
[309] Calnan, B., Tidor, B., Biancalana, S., Hudson, D., Frankel, A., Arginine-mediated RNA recognition: the arginine fork. Science 1991, 252, 1167-1171.
[310] Weigand, J. E., Suess, B., Aptamers and riboswitches: perspectives in biotechnology. Appl Microbiol Biotechnol 2009, 85, 229-236.
[311] Fischer, E., Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft 1894, 27, 2985-2993.
[312] Koshland, D. E., Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A 1958, 44, 98-104.
[313] Bosshard, H. R., Molecular recognition by induced fit: how fit is the concept? News Physiol Sci 2001, 16, 171-173.
[314] Csermely, P., Palotai, R., Nussinov, R., Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci 2010, 35, 539-546.
[315] Lin, P. H., Tong, S. J., Louis, S. R., Chang, Y., Chen, W. Y., Thermodynamic basis of chiral recognition in a DNA aptamer. Phys Chem Chem Phys 2009, 11, 9744-9750.
[316] Rowe, A. A., Miller, E. A., Plaxco, K. W., Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor. Anal Chem 2010, 82, 7090-7095.
[317] Lim, J., Winkler, W. C., Nakamura, S., Scott, V., Breaker, R. R., Molecular-recognition characteristics of SAM-binding riboswitches. Angew Chem Int Ed Engl 2006, 45, 964-968.
[318] Blouin, S., Mulhbacher, J., Penedo, J. C., Lafontaine, D. A., Riboswitches: ancient and promising genetic regulators. Chembiochem 2009, 10, 400-416.
[319] Huang, W., Kim, J., Jha, S., Aboul-ela, F., A mechanism for S-adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm. Nucleic Acids Research 2009.
[320] Schmeing, T. M., Huang, K. S., Strobel, S. A., Steitz, T. A., An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 2005, 438, 520-524.
[321] Tao, J., Frankel, A. D., Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry 1996, 35, 2229-2238.
[322] Robertson, S. A., Harada, K., Frankel, A. D., Wemmer, D. E., Structure determination and binding kinetics of a DNA aptamer-argininamide complex. Biochemistry 2000, 39, 946-954.
[323] Pitici, F., Beveridge, D. L., Baranger, A. M., Molecular dynamics simulation studies of induced fit and conformational capture in U1A-RNA binding: do molecular substates code for specificity? Biopolymers 2002, 65, 424-435.
[324] Verli, H., Guimaraes, J. A., Insights into the induced fit mechanism in antithrombin-heparin interaction using molecular dynamics simulations. J Mol Graph Model 2005, 24, 203-212.
[325] Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., et al., The Amber biomolecular simulation programs. J Comput Chem 2005, 26, 1668-1688.
[326] Phillips, J. C., Braun, R., Wang, W., Gumbart, J., et al., Scalable molecular dynamics with NAMD. J Comput Chem 2005, 26, 1781-1802.
[327] Essmann, U., Perera, L., Berkowitz, M., Darden, T., et al., A smooth particle mesh Ewald method. J Chem Phys 1995, 103, 8577-8593.
[328] Ryckaert, J.-P., Ciccotti, G., Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 1977, 23, 327-341.
[329] Villa, A., Wohnert, J., Stock, G., Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch. Nucleic Acids Res 2009, 37, 4774-4786.
|