博碩士論文 962402603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.147.242.22
姓名 卡術尼(Sunil Kumar)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用中子繞射探討層狀硫屬氧化物BiOCuX (X=S,Se)的 自旋、電荷及晶體結構間的交互作用
(Spin, Charge and Lattice Couplings in Layered Oxychalcogenide BiOCuX (X= S, Se) Compounds Studied by Neutron Diffraction )
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用中子繞射、交流磁化率、磁化強度和電阻率進行BiOCu0.94S樣品之磁性及電性研究。樣品BiOCu0.94S的晶體結構為方P4/nmm對稱,室溫下晶格常數為 a = b =3.8645(1)和c=8.5493(3)。四方晶系的BiOCu0.94S原子結構包括BiO層以及CuS層,且層與層之間藉由弱離子鍵連接。在T=250 K以下銅的自旋以鐵磁性排列。反鐵磁性在低於180 K時始發展,同時發生晶格常數的激烈變化。傾斜鐵磁自旋在低溫下飽和磁矩大小為<μZ> =0.61 μB。在磁有序態下的電傳導可以用三維不定域跳躍傳導來描述。外加磁場可以有效地減少跳躍傳導之能障。當溫度高於 250 K,銅自旋方向進入無序態,此時電阻率隨溫度變化關係背離跳躍傳導的形式,而成為隨溫度的升高而變大,顯示出自旋與電荷之間的偶合。
另外,我們也研究四方晶系BiOCu0.98Se的晶體結構和磁結構。銅的鐵磁性自旋有序於 TC =300K以下開始發展。在260 K以下單位晶格發生負的熱膨脹,並產生了傾斜鐵磁自旋排列,銅自旋在低溫之飽和磁矩大小為<μZ> =0.5μB。這些觀察到現象清楚地揭示了晶格與磁結構之間的相互作用,這些罕見現象背後的機制肯定是有趣的。
摘要(英) The electrical and magnetic properties of slightly Cu-deficient BiOCu0.94S are investigated using neutron diffraction, ac magnetic susceptibility, magnetization and electric resistivity measurements. The sample BiOCu0.94S crystallizes into a tetragonal P4/nmm symmetry with cell parameters of a=b=3.8645(1) Å and c=8.5493(3) Å at 293 K. Tetragonal BiOCu0.94S consists of BiO and CuS layers that are interconnected through weak ionic bindings. The Cu spins order with a ferromagnetic arrangement below TC =250 K. An antiferromagnetic component develops below 180 K when the crystalline unit cell experiences a sharp thermal contraction upon cooling, resulting in a canted ferromagnetic spin arrangement at low temperatures with saturated magnetic moment <μZ> = 0.61μB. In the magnetically ordered state the electrical transport can be described by three-dimensional (3D) variable range hopping conduction. An applied magnetic field can effectively reduce the hopping barrier. Spin-charge couplings are clearly revealed as the resistivity departs from the hopping conduction to become increases with increasing temperature, when the Cu spins become disordered above 250 K.
The crystalline and magnetic structures of tetragonal BiOCu0.98Se are also studied. The ferromagnetic ordering of Cu spins develops below TC = 300K. An antiferromagnetic component develops below 260 K when the crystalline unit cell experiences negative thermal expansion upon cooling resulting in a canted ferromagnetic spin arrangement for the Cu spins at low temperatures with a saturated magnetic moment <μZ> = 0.5μB. These observations clearly reveal the appearance of interplay between lattice and magnetic structures, which is rarely seen and the mechanism behind is certainly interesting.
關鍵字(中) ★ 中子繞射
★ 硫屬氧化物
★ 硫屬氧化物
★ 磁結構
★ 中子繞射
★ 磁結構
關鍵字(英) ★ Magnetic structure
★ Oxychalcogenides
★ Magnetic structure
★ Neutron diffraction
★ Oxychalcogenides
★ Neutron diffraction
論文目次 Table of Contents
Abstract in English……………………i
Abstract in Chinese……………………ii
Dedication………………………………iii
Acknowledgements………………………iv
Table of Contents………………………vi
List of Figures…………………………x
List of Tables…………………………xiv
Chapter 1 Introduction …………………………1
1.1 Scientific Background……………………1
1.2 Structure and physical properties of RFeAsO ………2
1.2.1 Crystalline structure ………………………3
1.2.2 Structural transition ……………………4
1.2.3 Phase diagram …………………………..5
1.2.4 Magnetic structure …………………………………6
1.2.5 Electrical and magnetic properties ……………7
1.3 Some properties of BiOCuX (X = S or Se)……………9
References ……………………………………………………11
Chapter 2 Experimental Methods ………………………………13
2.1 Sample preparation ………………………………………13
2.2 Sample characterization …………………………………13
2.2.1 X-ray diffraction ………………………………13
2.2.2 Energy-dispersive x-ray spectroscopy ………15
2.2.3 Neutron diffraction measurements …………17
2.3 Magnetic measurements ………………………………19
2.4 Transport measurements ……………………………21
2.4.1 Overview of resistivity option ………………21
2.4.2 Resistivity measurements ……………………23
References ……………………………………………………25
Chapter 3 Theoretical Backgrounds ……………………26
3.1 AC magnetic susceptibility …………………26
3.2 Magnetic properties of Materials …………………28
3.2.1 Spin (magnetic) order ………………30
3.2.1.1 Behavior of a substance in a magnetic field …30
3.2.1.2 Types of magnetic order………33
3.2.1.3 Exchange mechanisms…………34
3.2.2 Langevin theory of paramagnetism …36
3.2.3 Brillouin function …………………38
3.3 Hopping conduction …………………………42
3.3.1 Nearest-neighbor hopping …………………42
3.3.2 Variable range hopping ……………………42
3.4 Magnetoresistance ………………………45
3.5 Theory of diffraction ………………………45
3.5.1 Powder diffraction …………………48
3.6 X-ray diffraction ………………………49
3.7 Neutron diffraction ……………………………50
3.7.1 Nuclear neutron diffraction ………………53
3.7.2 Magnetic neutron diffraction ……………54
3.8 The Reitveld method ……………………………58
References ……………………………………………64
Chapter 4 Spin, charge and lattice couplings in Cu-deficient BiOCu0.94S ……66
4.1 Crystalline structure …………………66
4.2 Trends of structural parameters with temperature…71
4.2.1 Thermal variation of lattice parameters …71
4.2.2 Thermal variations of bond lengths and bond angles …………………73
4.2.3 Thermal variations of bond valance sum (BVS)…75
4.3 Magnetic properties ………………………………77
4.3.1 AC susceptibility, hysteresis loops and thermal variations of magnetization..77
4.3.2 Variations of magnetization with applied magnetic field …………………....80
4.4 Transport properties ……………………………82
4.4.1 Thermal variations of electrical resistivity …82
4.4.2 Thermal variations of magnetoresistance ……84
4.4.3 Field dependence of magnetoresistance ……86
4.5 Results of neutron diffraction ………………87
4.5.1 Order parameters ……………………………87
4.5.2 Magnetic structure …………………………90
4-5-3 Possible mechanisms ……………………91
4.6 Thermal variations of superexchange integral ………93
4.7 Conclusions………………………………94
References ……………………………………………96
Chapter 5 Spin, charge and lattice couplings in Cu-deficient BiOCu0.98Se…….....98
5.1 Introduction...…………………………………98
5.2 Sample fabrication and crystalline structure ………98
5.3 Thermal variation of lattice parameters ………104
5.4 Thermal variations of structural parameters ………106
5.5 Magnetic properties ……………………………108
5.5.1 AC susceptibility and thermal variations of magnetization………108
5.5.2 Variations of magnetization with applied magnetic field ………………….110
5.6 Transport properties ……………………….112
5.6.1 Thermal variations of resistivity ………112
5.6.1 Thermal variations of magnetoresistance …114
5.7 Results of neutron diffraction …………………115
5.7.1 Order parameters ……………………………115
5.7.2 Magnetic structure …………………………117
5.8 Thermal variations of superexchange integral………118
5.9 Conclusions ……………………………119
References ……………….120
Vita…………………………...122
參考文獻 Chapter 1
References
1Y. Kamihara, T. Watanabe, M. Hirano & H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
2X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen and D. F. Fang, Nature (London) 453, 761 (2008).
3G. F. Chen, Z. Li, G. Li, J. Zhou, D. Wu, J. Dong, W. Z. Hu, P. Zheng, Z. J. Chen, H. Q. Yuan, J. Singleton, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 101, 057007 (2008).
4G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 100, 247002 (2008).
5Z.-A. Ren, G.-C. Che, X.-L. Dong, J. Yang, W. Lu, W. Yi, X. -L. Shen, Z.-C. Li, L.-L. Sun, F. Zhou and Z.-X Zhao, Europhys. Lett. 83, 17002 (2008).
6P. Quebe, L. J. Terbüchte, and W. Jeitschko: J. Alloys Compd. 302, 70 (2000).
7N. Qureshi, Y. Drees, J. Werner, S. Wurmehl, C. Hess, R. Klingeler, B. Büchner, M. T. Fernández-Díaz, and M. Braden, Phys. Rev. B 82, 144521 (2010).
8J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang. Preprint at http://arxiv.org/abs/0803.3426v1 (2008).
9C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature (London) 453, 899 (2008).
10S. Margadonna, Y. Takabayashi, M. T. McDonald, M. Brunelli, G. Wu, R. H. Liu, X. H. Chen, and K. Prassides, arXiv:0806.3962.
11Q. Huang, J. Zhao, J. W. Lynn, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Phys. Rev. B 78, 054529 (2008).
12Chao Cao, P. J. Hirschfeld,1 and Hai-Ping Cheng, Phys. Rev. B 77, 220506 (2008).
13F. J. Ma & Z. Y. Lu, Phys. Rev. B 78, 033111 (2008).
14H.-H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F. J. Litterst, M. Kraken, M. M. Korshunov, I. Eremin, S.-L. Drechsler, R. Khasanov, A. Amato, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, Phys. Rev. Lett. 101 077005 (2008).
15H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20, 326 (2008).
16A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V.A. Dolgikh and B. A. Popovkin, J. solid state chemistry 112, 189-191 (1994).
17W. J. Zhu, Y. Z. Huang, C. Dong, Z. X. Zhao, Mater. Res. Bull. 29, 143 (1994).
18T. ohtani, Y. Tachibana, Y. Fujii, J. Alloys compd. 262-263, 175 (1997).
19P.S. Berdonosov, A. M. Kusainova, L. N. Kholodkovskaya, V. A. Dolgikh, L.G. Akselrud, B. A. Popovkin, J. solid state chem. 118, 74 (1995).
20I. R. Shein and A. L. Ivanovskii, Solid State Commun. 150, 640 (2010).
21A. Ubaldini, E. Giannini, C. Senatore, D. van der Marel, Physica C 470, s356 (2010).
22Anand Pal, H. Kishan, V.P.S. Awana, J. Supercond. Nov. Magn. 23, 301 (2010).
23L. Ortenzi, S.Biermann, O. K. Andersen, I. I. Mazin, and L.Boeri, Phys. Rev B 83, 100505(R) (2011).
Chapter 2
References
1Energy Dispersive X-ray Microanalysis Hardware Explained, Oxford Instruments Analytical Technical Briefing.
2K.-D. Liss, B. Hunter, M. Hagen, T. Noakes, S. Kennedy, Physica B 385–386 1010 (2006)
3http://www.qdusa.com/sitedocs/productBrochures/mag3-07.pdf
4http://www.qdusa.com/sitedocs/productBrochures/16TPPMS7.pdf
5http://www.mrl.ucsb.edu/mrl/centralfacilities/chemistry/resPPMS.pdf
Chapter 3
References
1R. W. Rollins, H. Küpfer, and W. Gey, J. Appl. Phys. 45, 5392 (1974).
2http://www.qdusa.com/sitedocs/appNotes/ppms/1078-201.pdf
3S. Elliot, The physics and chemistry of solids; Wiley: Chichester, 1998.
4E.O. Wollan and W.C. Koehler, Phys. Rev., 100, 545 (1955).
5J.B. Goodenough, Phys. Rev., 117, 1442 (1960).
6P.W. Anderson, Phys. Rev., 79, 350 (1950).
7K. H. J. Buschow and F. R. de Boer, Physics of magnetism and magnetic materials (Kluwer Academic publishers, 2004) Chap. 4.
8Kazuo Morigaki, Physics of Amorphous Semiconductors (World Scientific 1999) Chap. 7.
9N. F. Mott and E. A. Davis, Electronic Processes in Non-CrystallineMaterials, 2th Ed., Chap. 2, (Clarendon press, Oxford, 1979).
10W. Massa, Crystal structure determination; Springer-Verlag: Berlin, 2000.
11G.E. Bacon: Neutron Diffraction, University of Sheffield, Oxford Press, 1975.
12S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Vol. 1 (Clarendon press, Oxford, 1984).
13G. L. Squires, Introduction of the Theory of Thermal Neutron Scattering (Cambridge University Press, Cambridge, 1978).
14A. C. Larson and R. B. von Dreele, GSAS Manual, p134.
15http://www.ncnr.nist.gov/instruments/bt1/neutron.html.
16R.P.O. Y. A. Izyumov, Magnetic Neutron Diffraction; Plenum Press: New York, 1970.
17H.M. Rietveld, Acta Cryst., 22, 151 (1967).
18H.M. Rietveld, J. Appl. Cryst., 2, 65 (1969).
19R.A. Young, The Rietveld Method; Oxford University Press: Oxford, 1995.
20 A.C. Larson and R.B.V. Dreele, General Structureal Analysis System (GSAS); Los
Alamos National Laboratory: Los Alamos, 1990.
21 P. Thompson, D.E. Cox and J.B. Hastings, J. Appl. Cryst., 20, 79 (1987).
22B. H. Toby, J. Appl. Cryst. 34, 210-213, (2001).
Chapter 4
References
1A. C. Larson and R. B. Von Dreele, General Structure Analysis System, Report LA-UR-86-748; Los Alamos National Laboratory: Los Alamos, NM. 1990.
2H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
3I. R. Shein and A. L. Ivanovskii, Solid State Commun. 150, 640 (2010).
4Anand Pal, H. Kishan, V.P.S. Awana, J. Supercond. Nov. Magn. 23, 301 (2010).
5H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20, 326 (2008).
6A. Ubaldini, E. Giannini, C. Senatore, D. van der Marel, Physica C 470, s356 (2010).
7A. M. Kusianova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, A. V. Dolgikh, and B. A. Popovkin, J. Solid State Chem. 112, 189 (1994).
8W. C. Sheets, E. S. Stampler, H. Kabbour, M. I. Bertoni, L. Cario, T. O. Mason, T. J. Marks, and K. R. Poeppelmeier, Inorg. Chem. 46, 10741 (2007).
9C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature (London) 453, 899 (2008).
10J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nature Mater. 7, 953 (2008).
11Q. Huang, J. Zhao, J. W. Lynn, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Phys. Rev. B 78, 054529 (2008).
12J. Zhao, Q. Huang, C. de la Cruz, J. W. Lynn, M. D. Lumsden, Z. A. Ren, J. Yang, X. Shen, X. Dong, Z. Zhao, and P. Dai, Phys. Rev. B 78, 132504 (2008).
13S. Margadonna, Y. Takabayashi, M. T. McDonald, K. Kasperkiewicz, Y. Mizuguchi, Y. Takano, A. N. Fitch, E. Suard, and K. Prassides, Chem. Commun. 2008, 5607 (2008).
14F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).
15S. Li, C. de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Y. L. Huang, F. C. Hsu, K. W. Yeh, M. K. Wu, and P. Dai, Phys. Rev. B 79, 054503 (2009).
16C. L. Zhang, A. Ignatov, M. Vannucci, M. Croft, T. A. Tyson, D. Kwok, Z. Qin, S.-W. Cheong, preprint at ="" 17i.d.="" brown="" and="" d.="" altermatt,="" acta="" cryst.="" b,="" 41,="" 244-247="" (1985).
="" 18i.d.="" brown,="" j.="" chem.="" edu.,77,="" 1070="" (2000).
="" 19m.="" o'keeffe="" a.="" navrotsky,="" structure="" bonding="" in="" crystals;="" academic="" press="" inc.:="" new="" york,="" 1981.
="" 20j.="" alonso,="" m="" t="" casais,="" m.="" martínez-lope,="" l.="" martínez="" t.="" fernández-díazz,
="" phys.:="" condens.="" matter="" 9,="" 8515–8526="" (1997).
="" 21a.="" salinas-sanchez,="" garcia-monoz,="" j.rodrigues-carvajal,="" r.saez-puche,="" j.solid
="" state="" 100,="" 201-211="" (1992).
="" 22for="" example,="" see="" isihara,="" condensed="" physics.="" (oxford="" univ.="" press,="" ny,="" 1991),="" pp.157.
="" 23c.="" de="" la="" cruz,="" q.="" huang,="" w.="" lynn,="" li,="" ratcliff="" ii,="" zarestky,="" h.="" mook,="" g.="" f.="" chen,="" luo,="" n.="" wang,="" p.="" dai,="" nature="" (london)="" 453,="" 899="" 24j.="" zhao,="" c.="" s.="" y.="" green,="" z.="" mater.="" 7,="" 953="" 25i.="" i.="" mazin,="" preprint="" at=""
26 L. E. Gontchar, A. E. Nikiforov, Phys. Rev. B. 66, 014437 (2002).
27E. Gontchar, A. E. Nikiforov, S. E. Popov, J. Magn. Magn. Mater. 223, 175 (2001).
28 J. Kanamori, J. Appl. Phys. 31, 14S (1960).
Chapter 5
References
1Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
2H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Nature (London) 453, 376 (2008).
3T. ohtani, Y. Tachibana, Y. Fujii, J. Alloys compd. 262-263, 175 (1997).
4P.S. Berdonosov, A. M. Kusainova, L. N. Kholodkovskaya, V. A. Dolgikh, L.G. Akselrud, B. A. Popovkin, J. solid state chem. 118, 74 (1995).
5H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20, 326 (2008).
6L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart and N. Dragoe, Appl. Phys. Lett. 97, 092118 (2010).
7A. C. Larson and R. B. Von Dreele, General Structure Analysis System, Report LA-UR-86-748; Los Alamos National Laboratory: Los Alamos, NM. 1990.
8H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
9A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V. A. Dolgikh and B. A. Popovkin, J. Solid state Chem.112, 189-191 (1994).
10Evan S. Stampler, William C. Sheets, Mariana I. Bertoni, Wilfrid Prellier, Thomas O. Mason and Kenneth R. Poeppelmeier, Inorg. Chem. 47, 10009 (2008).
11J.E. Orgel, J. Chem. Soc.1959, 3815 (1959).
12F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 4th ed. (John Wiley: New York, 1980; p 327).
13For example, see A. Isihara, Condensed Matter Physics. (Oxford Univ. Press, NY, 1991), pp.157.
14 L. E. Gontchar, A. E. Nikiforov, Phys. Rev. B. 66, 014437 (2002).
15E. Gontchar, A. E. Nikiforov, S. E. Popov, J. Magn. Magn. Mater. 223, 175 (2001).
16J. Kanamori, J. Appl. Phys. 31, 14S (1960).
指導教授 李文献(Wen-Hsien Li) 審核日期 2011-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明