摘要(中) |
在大強子對撞機中尋找帶兩個電子電量的希格斯粒子, 預期其主要衰變模式為兩個帶電的輕
子, 是一種多個輕子且乾淨的訊號。有幾種產生機制能發現帶兩個電子電量的希格斯粒子, 其
中被廣為研究的有:pp→H++H--, pp→H±±H±。在三重態希格斯模型中, 考慮希格斯位能式
中純量交互作用的項, 能夠產生不同希格斯純量場間質量的差異。在特定的質量分布譜中,
較重的希格斯粒子能夠衰變為較輕的希格斯粒子。基於這個理由, 更多的產生機制能成為搜
尋帶兩個電子電量希格斯粒子的來源, 例如:pp→A0H0, pp→A0H-, pp→H0H-, pp→H+H- 。
過去, 許多學者研究帶兩個電子電量希格斯粒子的尋找方式, 多數沒有考慮純量場之間的衰
變。在這篇論文中, 我研究了由其他純量場衰變產生帶兩個電子電量希格斯粒子的產生機制,
考慮大強子對撞機能量為7並14兆電子伏特, 討論發現帶兩個電子電量希格斯粒子的可能
性。我們研究發現這中新的產生機制能夠增加發現帶兩個電子電量希格斯粒子的機會。
|
摘要(英) |
Searching for doubly charged Higgs bosons H ++ with lepton number violating decay can be a clean multi-lepton signature at the CERN LHC. To discover the doubly charged Higgs bosons, we can have these production mechanism pp → H ++ H −− and pp → H ±± H± . In the HTM, keep the Higgs potential quartic terms will open the mass difference between different scalar fields. In particular mass spectrum, singly charged Higgs bonson/CP-even, CP-odd neutral Higgs boson can decay into doubly charged Higgs boson/singly charged Higgs boson and a virtual W boson. The process with CP- even and CP-odd neutral Higgs bosons, singly charged Higgs bosons: pp → A0H0, pp → A0H± , pp → H0H ± followed by the decay H0 → H± W ∗ , A0 → H ± W ∗ , H ± → H ±± W ∗ can be a source for H ++ production. In this thesis, I present the result of H ++ search at LHC √s = 7/14 TeV, consider the additional source contribution to doubly charged Higgs boson production, use same kinematic cuts for 4 charged lepton or 5 charged lepton in final state and the SM background to see the significance. We found out the additional source can improve the H ++ detection potential at the LHC.
|
參考文獻 |
[1] Fukuda, S. et al, Phys. Rev. Lett. 86 5651 (2001).
[2] S. Weinberg, Phys. Rev. Lett. 43 1566 (1979) .
[3] CMS PAS HIG-11-001
[4] D. Griffiths, Introduction to Elementary Particles (2008).
[5] Ahmad, Q. R. et al. Phys. Rev. Lett. 89 011301 (2002) .
[6] Hirata, K. S. et al. Phys. Lett. B 280 146 (1992).
[7] P. Minkowski, Phys. Lett. B 67 421; T (1977).
[8] M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 6 122
(2004).
[9] T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Phys. Rev. D 76, 075013 (2007).
[10] P. F. Perez, T. Han, G. Huang, T. Li and K. Wang, Phys. Rev. D 78, 015018
(2008) .
[11] T. P. Cheng and L. F. Li, Phys. Rev. D 22 2860 (1980).
[12] R. Foot, H. Lew, X. G. He and G. C. Joshi, Z. Phys. C 44 441(1989) .
[13] T. P. Cheng and L. F. Li, Gauge Theory Of Elementary Particle Physics, Oxford
University Press, New York, (1984).
[14] A.G. Akeroyd, Cheng-Wei Chiang, Phys. Rev .D 81 115007 (2010).
[15] Paramita Day, Anirban Kundu, Biswarup Mukhopadhyaya (2008) arXiv: hep-
ph/0802.2510.
[16] A.G. Akeroyd, Mayumi Aoki, Phys. Rev. D 72, 035011 (2005).
[17] S. Chakrabarti, D. Choudhury, R. M. Godbole, Phys. Lett. B 434 347-353 (1998)
[18] Particle physics booklet(2006)
[19] J. L. Rosner, S. Stone, (2010) arXiv:1002.1655
[20] A.G. Akeroyd, Cheng-Wei Chiang, Naveen Gaur, Phys. Rev. D 81, 115007
(2010).
[21] A. G. Akeroyd, Hiroaki Sugiyama, arXiv: hep-ph/1105.2209 (2011).
[22] D. E. Acosta et al. [CDF Collaboration], Phys. Rev. Lett. 93, 221802 (2004).
[23] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 93, 141801 (2004).
[24] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 101, 071803 (2008).
[25] T. Aaltonen et al. [The CDF Collaboration], Phys. Rev. Lett. 101, 121801 (2008).
[26] M. Muhlleitner and M. Spira, Phys. Rev. D 68, 117701 (2003).
[27] A. Pukhov, arXiv: hep-ph/9908288
[28] Ahmad, Q. R. et al. Phys. Rev. Lett. 89 (2002) 011301.
[29] Paramita Day, Anirban Kundu, Biswarup Mukhopadhyaya (2008)[arXiv:
0802.2510]
[30] G. L. Bayatian et al. [CMS Collaboration], J. Phys. G 34, 995 (2007).
[31] J. C. Montero, C. A. deS. PiresandV. Pleitez, arXiv: hep-ph: 0011296 (2001)
[32] Werner Rodejohann, He Zhang, arXiv: hep-ph/1011.3606 (2010)
[33] A. Arhrib, R. Benbrik, M. Chabab , G. Moultaka, M. C. Peyran‘ere, L. Rahili , J. Ramadan, arXiv: hep-ph/1105.1925
[34] Neil Christensen and Cheng-Wei Chiang, Mathematica Package ”Event Analyzer 0.41”
|