博碩士論文 992202603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:174 、訪客IP:44.195.47.227
姓名 戴薇安(Dewi Anggraeni)  查詢紙本館藏   畢業系所 物理學系
論文名稱 二氧化碳在62-120nm的光化學
(Photochemistry of carbon dioxide at 62–120 nm)
相關論文
★ 氧氣在105-190nm間高激發態之光譜研究★ H2O光解產生OH(A2Σ+)振動態之研究
★ 氮氣光譜之研究Ⅰ:C3Πu-X1Σg+及a1Πg- X1Σg+系統★ 丙炔與丙二烯吸收光譜之研究
★ O2(b1Sg+)氣輝的全球分布與變化★ 以雷射雷達量測對流層頂之溫度、高度分布 -與無線電探空儀量測資料之比較、分析
★ 氮氣光譜之研究Ⅱ: C3Πu-X1Σg+及a1Πg- X1Σg+系統★ 一氧化氮激態的消光及螢光激發光譜之研究
★ 一氧化氮激態D2Σ+螢光之消激研究★ 一氧化氮激態A2Σ+螢光之消激研究
★ 中壢上空10–30公里間的卷雲、氣膠、溫度的測量與光散射性質之研究★ 低對流層氣膠之光達量測
★ 對流層氣膠光學性質之研究★ 氮氣分子在45-100 nm之光吸收、光離子化、光解離
★ 利用光達技術探測氣膠與水汽之作用★ 利用地面與空載光達進行熱帶高空卷雲之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文中,吸收和熒光發射光譜的二氧化碳進行了研究,利用同步輻射光源從 6m高通量光束線在SRRC,台灣。光吸收截面的二氧化碳在波長62 - 120納米已而得。吸收和熒光測量也已被用來分配裡德堡態匯聚成CO2+ (X2 ?g1/2),田中,小川系列匯聚成CO2+ (A 2?u),亨寧漫和夏普系列匯聚成CO2+ (B 2?u+), 並 TJL系列匯聚成CO2+ (C2?g+). 電離勢(IP)為 CO2 +離子狀態已經來自這項任務,如IP為CO2+ (A 2?u)是17.36 eV的,IP為CO2+ (B 2?u+) 為18.07 eV的,和IP CO2+ (C2?g+) 為19.39 eV的。從熒光光譜,我們觀察到第四個積極的波段內,排放的二氧化碳(A1??– X1?+) 在69 - 80 nm的入射光子的能量。O(1S)的生產從二氧化碳光解波長範圍在105 - 120納米也被觀察到使用高壓氙氣,以提高O(1S)到O(1D)的過渡。從這個結果我們發現,二氧化碳 1?u+ 是一個具有挑戰性的光解通道O(1S),我們還建議,3p? 1?u狀態可能是一個通道,產生 O(1S)。
摘要(英) In this thesis, absorption and fluorescence emission spectra of carbon dioxide have been studied using synchrotron radiation light source from 6m-high flux beamline at SRRC, Taiwan. Photoabsorption cross section of carbon dioxide at wavelength 62 – 120 nm has been derived. Absorption and fluorescence measurement also has been used to assign Rydberg states converging to CO2+ (X2 ?g1/2), Tanaka-Ogawa series converging to CO2+ (A 2?u), Henning Diffuse and Sharp series converging to CO2+ (B 2?u+), and TJL series converging to CO2+ (C2?g+). Ionization potential (IP) for CO2+ ionic state has been derived from this assignment, such as IP for CO2+ (A 2?u) is 17.36 eV, IP for CO2+ (B 2?u+) is 18.07 eV, and IP for CO2+ (C2?g+) is 19.39 eV. From the fluorescence spectrum, we observed fourth positive band as a emission of CO (A1??– X1?+) at 69 – 80 nm incident photon energy. O(1S) production from CO2 photodissociation in the wavelength range 105 – 120 nm has also been observed using high pressure Xenon to enhance O(1S) to O(1D) transition. From this result we observed that CO2 1?u+ be a challenging photodissociation channel of O(1S) and we also suggest that 3p? 1?u states may be a channel to produce O(1S).
關鍵字(中) 關鍵字(英) ★ carbon dioxide
★ photoabsorption cross section
★ fluorescence
論文目次 ABSTRACT........................................i
摘要............................................ii
ACKNOLEDGEMENTS.................................iii
CONTENT.........................................iv
List of Figure..................................vi
List of Table...................................viii
1. INTRODUCTION.................................1
1.1.Research Background.........................1
1.2. Spectroscopy Research......................1
1.3. Research Objection.........................2
2. GENERAL BACKGROUND...........................3
2.1. Molecular Orbital of CO2...................3
2.2. Electronic Transition in CO2...............6
2.2.1. Electronic Energy Level of CO2...........6
2.2.2. Vibrational Energy of CO2................7
2.3. Ionization Energies of CO2 state...........9
2.4. Review of Photoabsorption of CO2...........10
2.5. Photodissociation of CO2...................11
2.5.1. Fourth Positive Band.....................13
2.5.2. O(1S) product of Photodissociation of CO2..13
2.6. Oxygen Atomic Transition...................15
3. EXPERIMENTAL SETUP...........................18
3.1. Light Source...............................18
3.2. Gas Cell System............................22
3.3. Vacuum Maintenance.........................22
3.4. Alignment and Collimation..................23
3.3. Signal Detection System....................23
3.5. Background measurement.....................23
3.6. Absorption Spectrum........................24
3.7. Fluorescence Spectrum......................24
3.8. Data Acquisition System....................25
4. RESULT AND DISCUSSION........................26
4.1. Consistence of Synchrotron Light Source....26
4.2. Wavelength Calibration.....................27
4.3. Photoabsorption cross section of carbon dioxide...29
4.3.1. Photoabsorption Cross Section in region I 105 – 120 nm...29
4.3.2. Photoabsorption Cross Section in region II : 85 - 105 nm...40
4.3.3. Photoabsorption Cross Section in region region III : 62 - 85 nm...41
4.4. Florescence Excitation Spectra of Carbon Dioxide...48
4.4.1. FES of CO2+(A2u X2g) and CO2+ (B 2u+ X 2u )emissions...48
4.4.2. Fluorescence of the CO.................53
4.5. Review of Ionization Threshold for A, B, and C ionic state of carbon dioxide.......................53
4.6. Production of O(1S) from CO2 Photodissociation....57
5. CONCLUSSION...............................63
6. BIBLIOGRAPHY..............................64
7. APPENDIX..................................67
參考文獻 1. Y. L. Yung and W. B. DeMore. Photochemistry of Planetary Atmospheres. Oxford
University Press, New York, pp. 282 - 287 (1999)
2. O. Witasse and A.F. Nagy, Planetary and Space Science. 54, pp. 1381–1388 (2006)
3. T. G. Slanger, D. L. Huestis, P. C. Cosby, N. J. Chanover, and T. A. Bida, Icarus. 182, pp.
1 – 9 (2006)
4. A. Barron. Carbon Dioxide, Connexions Web site. http://cnx.org/content/m32935/latest/,
Jan 20, (2010)
5. W.B. England, W.C. Ermler, and A.C. Wahl, J. Chem. Phys. 66, pp. 2336 (1977)
6. E. P. Gentieu and J. E. Mentall, J. Chem. Phys. 58, pp. 4803 (1973)
7. E. Olalla and I. Martin, International Journal of Quantum Chemistry. 99, pp. 502 – 510
(2004)
8. J. W. Rabalais J. M. McDonald, V. Scherr and S. P. McGlynn, Chem. Rev. 71, pp. 73–108
(1971)
9. M. Ogawa, J. Chem. Phys. 54, pp. 2550-2556 (1971)
10. D.E. Shemansky, J. Chem. Phys. 56, pp. 1582-1587 (1972)
11. B. R. Lewis and J. H. Carver, J. Quant. Spectrosc. Radiat. Transfer 30, pp. 297-309 (1983)
12. C. Cossart-Magos, M. Jungen, and F. Launay, Molec. Phys. 61, pp. 1077 (1987)
13. K. Yoshino, J.R. Esmond, Y. Sun, W.H. Parkinson, K. Ito, and T. Matsui, Quant.
Spectrosc. Radar. 55, pp. 5340 (1996)
14. H. Okabe. Photochemistry of Small Molecule. John Wiley & Son, Canada, pp. 208 - 213
(1978)
15. D.A. Shaw, D.M.P. Holland, M.A. Hayes, M.A. MacDonald, A. Hopkirk, S.M.
McSweeney, Chemical Physics. 198, pp. 381-396 (1995)
16. M. Ukai, K. Kameta, N. Kouchi, K. Nagano, Y. Hatano, and K. Tanaka, Journal of
Chemical Physics. 97, pp. 2835-2842 (1992)
17. I. Koyano, T. S. Wauchopt, and K. H. Welge, J. Chem. Phys. 63, pp.110-113 (1975)
18. L.R. LeClair and J. W. McConkey. J. Phys. B: At. Mol. Opt. Phys. 27, pp. 4039 (1994)
19. I. Koyano, T. S. Wauchopt, and K. H. Welge, J. Chem. Phys. 63, pp.110-113 (1975)
20. T. H. Dunning and P. J. Hay, J. Chem. Phys. 66, pp. 3767 (1977)
21. D. L. Cunningham and K. C. Clark, J. Chem. Phys. 61, pp. 1118-1124 (1974)
22. T.-F. Hsieh, L.-R. Huang, S.-C. Chung, T.-E. Dann,P.-C. Tseng, C. T. Chen and K.-L.
Tsang. J. Synchrotron Rad. 5, pp. 562 – 564 (1998)
23. User’s Manual of 6-m High Flux Beamline at SRRC (SRRC, 2011)
24. C. Cossart-Magos, F. Launay, and J. Parkin, Molec. Phys. 75, pp. 835 (1992)
25. C. Cossart-Magos, S. Leach, M. Eidelsberg, F. Launay, and F. Rostas, J. Chem. Soc.
Faraday Trans. 78, pp. 1477 (1982)
26. W. C. Price and D. M. Simpson, Proc. Roy. Soc. A. 169, pp. 501 (1938)
27. E. Lindholm, A. Fysik. 40, pp. 125 (1968)
28. C. Fridh, L, Asbrink and E. Lindholm, Chem. Phys. 27, pp. 169 (1978)
29. T. Baer and P.M. Guyon, J. Chem. Phys. 85, pp. 4765 (1986)
30. P.M. Dittman, D. Dill and J.L. Dehmer, Chem. Phys. 78, pp. 405 (1983)
31. A.C. Parr, P.M. Dehmer, J.L. Dehmer, K. Ueda, J.B. West, M.R.F. Siggel and M.A.
Hayes, J. Chem. Phys. 100, pp. 8768 (1994)
32. Y. Tanaka, A. S. Jursa, and F. J. Leblance, J. Chem. Phys. 32, pp. 1199 - 1205 (1960)
33. C. Fridh, L. Asbrink and E. Lindholm, Chem. Phys. 27, pp. 169 (1978)
34. N. Padial, G. Csanak, B.V. McKoy and P.W. Langhoff, Phys. Rev. A. 23, pp. 218 (1981)
35. P.M. Dittman, D. Dill and J.L. Dehmer, Chem. Phys. 78, pp. 405 (1983)
36. J.B. Nee, C. T. Kuo, Y. M. Chen, S. Y. Wang, and S.C. Li, Chinese Journal of Physics. 42,
pp. 65 – 73 (2004)
37. K. Yoshino, J. R. Esmond, Y. Sun, W.H. Parkinson, K. Ito, and T. Matsui , Journal of
Quantitative Spectroscopy and Radiative Transfer. 55, pp. 53 - 60 (1996)
38. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecule,
Van Norstand Reinhold Co., 1950
39. J.I. Steinfield, Molecules and Radiation, an Introduction to Modern Molecular
Spectroscopy. The Murray Printing Company, United States of America, pp. 82 - 99 (1985)
40. Y. M. Chen, Master Thesis Report. National Sun Yat-Sen University. 1998
41. G.M. Lawrence, J. Chem. Phys. 57, pp. 5616 (1972)
42. W. F. Chan, G. Cooper, and C. E. Brion, Chem. Phys. 178, pp. 401 (1993)
43. F. Billebaud, J. Crovisier, E. Lellouch, and T. Encrenaz, Planet. Space Sci . 39, pp. 213-218
(1991)
44. S. Svanberg, Atomic and Molecular Spectroscopy - Basic Aspect and Practical
Applications. Springer-Verlag, Berlin Heidelberg, pp. 35 – 36 (1991)
45. L.S. Wang, J.E. Reutt, Y.T. Lee and D.A. Shirley, J. Electron Spectry. Relat. Phenom. 47,
pp. 167 (1988)
46. G. R. Cook, P.H. Metzger, and M. Ogawa, J. Chem. Phys. 44, pp. 8 (1966)
指導教授 倪簡白(Jan-Bai Nee) 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明